Что называется компьютерной сетью. Компьютерные сети: виды, функции, топология. Настройка сетевой платы

Типы сетей.

Часто при организации связи между двумя компьютерами за одним компьютером закрепляется роль поставщика ресурсов (программ, данных и т.д.), а за другим - роль пользователя этих ресурсов . В этом случае первый компьютер называется сервером , а второй - клиентом или рабочей станцией. Работать можно только на компьютере-клиенте под управлением специального программного обеспечения.

Сервер (англ. serve - обслуживать) - это высокопроизводительный компьютер с большим объёмом внешней памяти, который обеспечивает обслуживание других компьютеров путем управления распределением дорогостоящих ресурсов совместного пользования (программ, данных и периферийного оборудования).

Клиент (иначе, рабочая станция) - любой компьютер, имеющий доступ к услугам сервера.

Существует два основных типа сетей: одноранговые и сети на основе сервера .

В одноранговой сети все компьютеры равноправны: нет иерархии среди компьютеров и нет выделенного (англ. dedicated ) сервера. Как правило, каждый компьютер функционирует и как клиент, и как сервер; иначе говоря, нет отдельного компьютера, ответственного за администрирование всей сети. Все пользователи самостоятельно решают, какие данные на своем компьютере сделать общедоступным по сети. На сегодняшний день одноранговые сети бесперспективны, поэтому в данной работе они не рассматриваются. Если к сети подключено более 10 пользователей, то одноранговая сеть, где компьютеры выступают в роли и клиентов, и серверов, может оказаться недостаточно производительной. Поэтому большинство сетей использует выделенные серверы.

Выделенным называется такой сервер, который функционирует только как сервер (исключая функции клиента или рабочей станции ). Они специально оптимизированы для быстрой обработки запросов от сетевых клиентов и для управления защитой файлов и каталогов. Практически все услуги сети построены на принципе клиент-сервер . Сети на основе сервера стали промышленным стандартом. Существуют и комбинированные типы сетей, совмещающие лучшие качества одноранговых сетей и сетей на основе сервера.

Все программное обеспечение сети также можно поделить на клиентское и серверное. При этом программное обеспечение сервера занимается предоставлением сетевых услуг, а клиентское программное обеспечение обеспечивает передачу запросов серверу и получение ответов от него.

В производственной практики ЛВС играют очень большую роль. Посредством ЛВС в систему объединяются персональные компьютеры, расположенные на многих удаленных рабочих местах, которые используют совместно оборудование, программные средства и информацию. Рабочие места сотрудников перестают быть изолированными и объединяются в единую систему.

Преимущества сетей

Рассмотрим преимущества, получаемые при сетевом объединении персональных компьютеров в виде внутрипроизводственной вычислительной сети.

● Разделение ресурсов.

Разделение ресурсов позволяет экономно использовать ресурсы, например, управлять периферийными устройствами, такими как печатающие устройства, внешние устройства хранения информации, модемы и т.д. со всех подключенных рабочих станций.

● Разделение данных .

Разделение данных предоставляет возможность доступа и управления базами данных с периферийных рабочих мест, нуждающихся в информации.

● Разделение программных средств.

Разделение программных средств предоставляет возможность одновременного использования централизованных, ранее установленных программных средств.

● Разделение ресурсов процессора .

При разделении ресурсов процессора возможно использование вычислительных мощностей для обработки данных другими системами, входящими в сеть. Предоставляемая возможность заключается в том, что на имеющиеся ресурсы не “набрасываются” моментально, а только лишь через специальный процессор, доступный каждой рабочей станции.

● Многопользовательский режим.

Многопользовательские свойства системы содействуют одновременному использованию централизованных прикладных программных средств, обычно заранее установленных на сервере приложения (англ. Application Server).

Все ЛВС работают в одном стандарте, принятом для компьютерных сетей – в стандарте Open Systems Interconnection (OSI ).

Протокол передачи данных

При передаче файлов требуется, чтобы оба компьютера, связывающиеся друг с другом, договорились об общем протоколе. Протоколом называется набор правил и описаний, которые регулируют передачу информации.

Для борьбы с ошибками, возникающими при передаче файлов, в большинстве современных протоколов имеются средства исправления ошибок. Конкретные методы в каждом протоколе свои, но принципиальная схема исправления ошибок одна и та же. Она заключается в том, что передаваемый файл разбивается на небольшие блоки - пакеты, а затем каждый принятый пакет сравнивается с посланным, чтобы удостовериться в их адекватности. Каждый пакет содержит дополнительный контрольный байт. Если принимающий компьютер после некоторых логических действий получит иное значение этого байта, он сделает вывод, что при пересылке пакета произошла ошибка, и запросит повторение передачи этого пакета. Несмотря на то что такая процедура уменьшает объем полезной информации, передаваемой в единицу времени, проверка на наличие ошибок и их исправление обеспечивают надежность передачи файла.

Наиболее совершенным и распространенным протоколом из всех доступных на сегодняшний день является TCP/IP (Transmission Control Protocol/Internet Protocol). Он обеспечивает сетевое взаимодействие компьютеров, работающих под управлением сетевой операционной системы, и возможность подключения к ним различных сетевых устройств. Все современные операционные системы поддерживают протокол TCP/IP, и почти все крупные сети используют его для обеспечения большей части своего трафика. Также протокол TCP/IP является стандартным для Интернета.

Базовая модель OSI (Open System Interconnection).

Для того чтобы взаимодействовать, люди используют общий язык. Если они не могут разговаривать друг с другом непосредственно, они применяют соответствующие вспомогательные средства для передачи сообщений. Похожие механизмы используются для передачи сообщений от отправителя к получателю.

Для того чтобы привести в движение процесс передачи информации через линии связи, необходимы машины с одинаковым кодированием данных и непосредственное соединение между ними. Для единого представления данных в линиях связи, по которым передается информация, сформирована Международная организация по стандартизации (англ. ISO – International Standards Organization).

ISO предназначена для разработки модели международного коммуникационного протокола, в рамках которой можно разрабатывать международные стандарты. Для наглядного пояснения разделим ее на семь уровней.

Международная организация по стандартизации (англ. ISO) разработала базовую модель взаимодействия открытых систем OSI (англ. Open Systems Interconnection) в 1984 году . Эта модель является международным стандартом для передачи данных.

Модель содержит семь отдельных уровней:

Уровень № 1 : физический – битовые протоколы передачи информации;

Уровень № 2 : канальный – формирование кадров, управление доступом к среде;

Уровень № 3 : сетевой – маршрутизация, управление потоками данных;

Уровень № 4 : транспортный – обеспечение взаимодействия удаленных процессов;

Уровень № 5 : сеансовый – поддержка диалога между удаленными процессами;

Уровень № 6 : представления данных – интерпретация передаваемых данных;

Уровень № 7 : прикладной – пользовательское управление данными.

Основная идея этой модели заключается в том, что каждому уровню отводится конкретная роль, в том числе и транспортной среде. Благодаря этому общая задача передачи данных разделяется на отдельные легко обозримые задачи. Необходимые соглашения для связи одного уровня с выше– и нижерасположенными называют протоколом.

Так как пользователи нуждаются в эффективном управлении, система вычислительной сети представляется как комплексное строение, которое координирует взаимодействие задач пользователей.

С учетом вышеизложенного можно вывести следующую уровневую модель с административными функциями, выполняющимися на пользовательском прикладном уровне.

Отдельные уровни базовой модели проходят в направлении вниз от источника данных (от уровня 7 к уровню 1) и в направлении вверх от приемника данных (от уровня 1 к уровню 7). Пользовательские данные передаются в нижерасположенный уровень вместе со специфическим для уровня заголовком до тех пор, пока не будет достигнут последний уровень.

На приемной стороне поступающие данные анализируются и, по мере надобности, передаются далее в вышерасположенный уровень, пока информация не будет передана в пользовательский прикладной уровень.

Уровень № 1. Физический (англ. physical ).

Определяет механический и электрический интерфейс с физическим носителем (т.е. коаксиальным кабелем или витой парой). Под этот уровень подходят физические устройства, управляющие передающим данные электрическим напряжением.

Уровень № 2. Канальный (англ. data link ).

Организует биты в “кадры”, физический уровень передает их в виде электрических импульсов. На этом уровне происходит отслеживание и исправление ошибок. Довольно часто уровень передачи данных (т.е. канальный уровень) подразделяется еще на два слоя, которые позволяют сгладить различие между физическими сетями, используемыми для соединений в локальных и глобальных сетях. Деление происходит на два подуровня: MAC (англ. Media Access Control – Управление передающей средой) и LLC (англ. Logical Link Control – Управление логической связью). Подуровень MAC предоставляет сетевым картам совместные доступ к физическому уровню. Уровень MAC напрямую связан с сетевой картой и отвечает за безошибочную передачу данных между двумя сетевыми картами. Подуровень LLC управляет передачей данных и определяет точки логического интерфейса (англ. Service Access Points – точки доступа к службам), которые другие компьютеры могут использовать для передачи информации из подуровня LLC в высшие уровни OSI .

Уровень № 3. Сетевой (англ. network ).

Использует предоставляемые нижележащим уровнем услуги связи для того, чтобы организовать передачу данных по сети. Сетевой уровень устанавливает правила связи компьютеров через многочисленные сегменты сети, включая “упаковку” сообщений в пакеты, снабженные адресами. Этот уровень отвечает за надежность передачи данных, основной его функцией является предоставление возможностей передачи данных для вышележащего транспортного уровня. Стандартными протоколами этого слоя являются CNLS , CONS , IP и IPX .

Уровень № 4. Транспортный (англ. transport ).

Отвечает за надежность обработки данных, вне зависимости от нижележащих уровней. Этот уровень управляет потоком данных в сети и контролем соединения между конечными адресами. К стандартным протоколам этого уровня относятся Transport Class 0, Class 1 и 4, относящиеся к модели OSI , TCP и SPX .

Уровень № 5. Сеансовый (англ. session ).

Выполняет функцию посредника между верхними уровнями, которые ориентированы на работу с приложениями, и нижними уровнями, ориентированными на коммуникации в реальном времени. Сеансовый уровень предоставляет возможности для управления и контроля данных в множестве одновременных соединений, контролируя диалог связанных по сети приложений. Этот уровень обеспечивает возможности запуска, приостановки, инициализации и перезапуска сети.

Уровень № 6. Представления данных (англ. presentation ).

Определяет форму, которую принимают данные при обмене между рабочими станциями. На компьютере–отправителе ПО этого уровня конвертирует данные из формата уровня приложений в промежуточный, распознаваемый остальными уровнями формат. На компьютере–получателе этот уровень совершает обратное преобразование данных. Уровень представления также управляет средствами защиты сети от несанкционированного доступа, предоставляя такие услуги, как кодирование данных. Кроме того, этот уровень устанавливает правила передачи данных и занимается сжатием передаваемой информации для повышения пропускной способности сети.

Уровень № 7. Прикладной (англ. application ).

Предоставляет конечным пользователям возможность пользоваться сетью. На этом уровне производятся высокоуровневые действия, управляемые компонентами локальной операционной системы. В отличие от остальных уровней модели OSI , этот уровень напрямую доступен конечным пользователям. В его функции входят передача данных, обработка сообщений, управление структурой каталогов, удаленное выполнение программ и эмуляция терминал.

Для передачи информации, по коммуникационным линиям данные преобразуются в цепочку следующих друг за другом битов (двоичное кодирование с помощью двух состояний: “0” и “1”).

Передаваемые алфавитно-цифровые знаки представляются с помощью битовых комбинаций. Битовые комбинации располагают в определенной кодовой таблице, содержащей 4-, 5-, 6-, 7- или 8-битовые коды.

Количество представленных знаков в ходе передачи данных зависит от количества битов, используемых в коде: код из 4 битов может представить максимум 16 алфавитно-цифровых знаков, 5–битовый код – 32 знака, 6–битовый код – 64 знака, 7–битовый – 128 знаков и 8–битовый код – 256 знаков.

При передаче информации, как между одинаковыми, так и между различными вычислительными системами применяют следующие коды.

На международном уровне передача символьной информации осуществляется с помощью 7–битового кодирования, позволяющего закодировать заглавные и строчные буквы английского алфавита, а также некоторые спецсимволы.

Национальные и специальные знаки с помощью 7–битового кода представить нельзя, для их передачи используют специальную шифровку и/или перекодировку информации. Для представления национальных знаков применяют наиболее употребимый 8–битовый код.

Для правильной и, следовательно, полной и безошибочной передачи данных необходимо придерживаться согласованных и установленных правил. Все они оговорены в протоколе передачи данных.

Протокол передачи данных требует следу ющей информации:

● Синхронизация

Под синхронизацией понимают механизм распознавания начала блока данных и его конца.

● Инициализация

Под инициализацией понимают установление соединения между взаимодействующими партнерами по сеансу связи.

● Блокирование

Под блокированием понимают разбиение передаваемой информации на блоки данных строго определенной максимальной длины (включая опознавательные знаки начала блока и его конца).

● Адресация

Адресация обеспечивает идентификацию различного используемого оборудования данных, которое обменивается друг с другом информацией во время взаимодействия.

● Обнаружение ошибок

Под обнаружением ошибок понимают установку битов четности и, следовательно, вычисление контрольных битов с целью проверки правильности передачи данных.

● Нумерация блоков

Текущая нумерация блоков позволяет установить ошибочно передаваемую или потерявшуюся информацию.

● Управление потоком данных

Управление потоком данных служит для распределения и синхронизации информационных потоков. Так, например, если не хватает места в буфере устройства данных или данные не достаточно быстро обрабатываются в периферийных устройствах (например, принтерах), сообщения и / или запросы накапливаются.

● Методы восстановления

После прерывания процесса передачи данных используют методы восстановления, чтобы вернуться к определенному положению для повторной передачи информации.

● Разрешение доступа

Распределение, контроль и управление ограничениями доступа к данным вменяются в обязанность пункта разрешения доступа (например, “только передача” или “только прием”).

Методы передачи данных в компьютерных сетях

При обмене данными между узлами сети используются три метода передачи данных:

  • симплексная (однонаправленная) передача (телевидение, радио);
  • полудуплексная (прием и передача информации осуществляются поочередно);
  • дуплексная (двунаправленная), каждая станция одновременно передает и принимает данные.

Для передачи данных в сетях наиболее часто применяется последовательная передача. Широко используются следующие методы последовательной передачи: асинхронная и синхронная.

Рис. 1. Асинхронная и синхронная передача данных

При асинхронной передаче каждый символ передается отдельной посылкой (рис. 1). Стартовые биты предупреждают приемник о начале передачи. Затем передается символ. Для определения достоверности передачи используется бит четности (бит четности = 1, если количество единиц в символе нечетно, и 0 в противном случае. Последний бит «стопбит» сигнализирует об окончании передачи.

Преимущества: несложная отработанная система; недорогое (по сравнению с синхронным) интерфейсное оборудование.

Недостатки асинхронной передачи: третья часть пропускной способности теряется на передачу служебных битов (старт/стоповых и бита четности); невысокая скорость передачи по сравнению с синхронной; при множественной ошибке с помощью бита четности невозможно определить достоверность полученной информации.

Асинхронная передача используется в системах, где обмен данными происходит время от времени и не требуется высокая скорость передачи данных. Некоторые системы используют бит четности как символьный бит, а контроль информации выполняется на уровне протоколов обмена данными.

При использовании синхронного метода данные передаются блоками. Для синхронизации работы приемника и передатчика в начале блока передаются биты синхронизации. Затем передаются данные, код обнаружения ошибки и символ окончания передачи. При синхронной передаче данные могут передаваться и как символы, и как поток битов. В качестве кода обнаружения ошибки обычно используется циклический избыточный код обнаружения ошибок (CRC). Он вычисляется по содержимому поля данных и позволяет однозначно определить достоверность приятой информации.

Преимущества синхронного метода передачи информации: высокая эффективность передачи данных; высокие скорости передачи данных; надежный встроенный механизм обнаружения ошибок.

Недостатки: интерфейсное оборудование более сложное и соответственно более дорогое.

Сетевые устройства и средства коммуникаций.

Для соединения устройств в сети используется специальное оборудование:
  1. Сетевой интерфейсный адаптер или сетевая плата для приёма и передачи данных. В соответствии с определённым протоколом управляют доступом к среде передачи данных. Размещаются в системных блоках компьютеров, подключенных к сети. К разъёмам адаптеров подключается сетевой кабель.
  2. Коннекторы (соединители) и терминаторы для подключения кабелей к компьютеру; разъёмы для соединения отрезков кабеля.
  3. Трансиверы повышают уровень качества передачи данных по кабелю, отвечают за приём сигналов из сети и обнаружение конфликтов.
  4. Хабы (концентраторы) и коммутирующие хабы (коммутаторы) расширяют топологические, функциональные и скоростные возможности компьютерных сетей.
  5. Повторители (репитеры) усиливают сигналы, передаваемые по кабелю при его большой длине.
  6. Сетевые кабели (наиболее часто используются витая пара, коаксиальный кабель и оптоволоконные линии).
    При выборе типа кабеля учитывают следующие показатели:

1. Сетевые карты (Network Adapters). Сетевая карта - это устройство, устанавливаемое в компьютер и предоставляющее ему возможность взаимодействия с сетью. В настоящее время выпускается большое количество разнообразных сетевых карт. Наиболее часто встречающиеся карты имеют вид печатной платы, устанавливаемой в разъем расширения материнской платы компьютера. Наибольшую известность в мире получили три вида локальных сетей: Ethernet (Fast Ethernet), Arcnet и Token Ring , которые различаются методами доступа к каналам передачи данных. Наиболее популярной сетевой технологией является технология Ethernet. Многие производители сейчас встраивают сетевые карты прямо в материнские платы.

Рис.2. Сетевая карта

В настоящее время производителями выпускается огромное количество сетевых карт различных типов, позволяющих использовать любые из существующих сред передачи: витая пара, коаксиальный или оптический кабель, радиоволны или инфракрасное излучение.

Для соединения сетевой карты и среды передачи данных применяются разъемы, зависящие от используемой среды передачи данных. Например, для тонкого коаксиального кабеля используются разъемы BNC, для витой пары пятой категории - разъемы RJ-45.

2. Являются механическими устройствами, предназначенными для сборки компонентов локальной компьютерной сети.

Коннекторы представляют собой разъемы, состоящие из двух частей - вилки и розетки, предназначенные для соединения отрезков кабеля или подсоединения кабеля к какому-либо устройству. Существующие типы коннекторов:

Коннекторы серии RJ для витых пар: RJ 45 – для сетевых кабелей и RJ 11, RJ 12 – для телефонных.

Коаксиальные коннекторы – для оконечивания коаксиальных кабелей, применяющихся обычно в телекоммуникационной сфере.

Оптические коннекторы, используемые с оптически-волоконными кабелями.

Терминаторы представляют собой те же разъемы с впаянным сопротивлением. Они подключаются к оконечным устройствам сети с шинной топологией для согласования длинной линии, которую образуют соединительные кабели. Сопротивление терминатора должно быть равно волновому сопротивлению кабеля. Один из двух терминаторов в сети должен быть заземлен.

В наиболее популярной технологии сети используют несколько типов коннекторов и терминаторов в зависимости от типа сети: на тонком (диаметр - 0,2 мм) или толстом (диаметр - 0,4 мм) кабеле или витой паре.

Для прокладки сети на тонком кабеле используют BNC-коннекторы, которые устанавливают на концах отрезков кабеля. С их помощью кабель подсоединяется с двух сторон к T-коннектору, который, в свою очередь, подсоединяется к внешнему разъему сетевой платы. T-коннекторы поставляются с сетевыми платами, BNC-коннекторы необходимо приобретать отдельно.

BNC-коннекторы бывают нескольких видов:

    "Под пайку". Это, как правило, разъемы российского производства (отечественное название СР-50). Их сборка достаточно затруднительна и требует навыков радиомонтажника.

    Обжимные BNC-коннекторы. Для их установки требуется специальный инструмент для зачистки кабеля и обжимные клещи.

    Накручивающиеся BNC-коннекторы. Очень удобны в установке.

3. Трансивер - это специальное устройство, используемое для подключения PC к локальной компьютерной сети Ethernet , создаваемой на толстом кабеле . Такая сеть обладает гораздо лучшей защитой от электромагнитного излучения, чем сеть на тонком кабеле, и может иметь длину до 2,5 км (при использовании дополнительных устройств).

Трансивер подключается непосредственно к толстому сетевому кабелю, "прокусывая" его. От трансивера к PC идет специальный кабель, максимальная длина которого 50 м.

4. Хаб (Концентратор) является центральным устройством сети на витой паре, от него зависит ее работоспособность. Его необходимо подключать к сети электропитания и располагать в легкодоступном месте, чтобы можно было без проблем подключать кабели и следить за индикацией. Концентраторы выпускаются на разное количество портов, чаще всего на 8, 12, 16, 24.

Концентраторы можно объединять, образуя каскадную структуру сети. При этом надо придерживаться следующих правил:

    не должно получаться закольцованных путей;

    между любыми двумя станциями должно быть не более 4 концентраторов.

Рис.3. Хаб (концентратор)

Хаб с набором разнотипных портов позволяет объединять сегменты сетей с различными кабельными системами. К порту хаба можно подключать как отдельный узел сети, так и другой хаб или сегмент кабеля.

Коммутатор (фактически переключающий концентратор) - по схеме включения устройство, аналогичное концентратору, но имеет некоторые существенные отличия:

    между любыми двумя станциями в сети нет ограничения четырьмя устройствами;

    управляемый коммутатор может использоваться в закольцованной сети;

    в управляемом коммутаторе можно управлять каждым портом в отдельности (ограничение пропускной способности, запрещение коммутации отдельных портов и пользователей);

    в отличие от концентратора коммутатор передает пакеты (информацию) конкретно той станции сети, для которой они (пакеты) предназначены.

5. Репитеры - это устройства, используемые для "удлинения" локальных компьютерных сетей.

Например, максимальная длина сети Ethernet на тонком кабеле составляет 185 м, тогда как соединение сегментов сети по 185 м с помощью репитеров позволяет получить сеть общей длиной до 925 м (в сети не может быть больше 4 репитеров). Сегмент сети подключается к репитеру через Т-коннектор (разветвитель). К одному концу коннектора подключается сегмент, а на другом ставится терминатор.

Использование репитеров в сети Ethernet на толстом кабеле позволяет удлинить ее до 2,5 км. В этом случае репитеры подключаются к сетевому кабелю через трансивер.

Традиционный репитер имеет два порта, к которым подключаются соединяемые сегменты сети с помощью BNC-разъема для сети на тонком кабеле и 15-контактного DIX(AUI)-разъема для сети на толстом кабеле. Репитер, имеющий большее число портов, может объединять соответственно большее число сегментов сети.

Существуют совмещенные репитеры, каждый порт которых имеет две пары разъемов: BNC и DIX, но они не могут быть задействованы одновременно.

    Стоимость монтажа и обслуживания;

    Скорость передачи информации;

    Ограничения на величину расстояния передачи информации (без дополнительных усилителей–повторителей (репитеров));

    Безопасность передачи данных.

Главная проблема заключается в одновременном обеспечении этих показателей, например, наивысшая скорость передачи данных ограничена максимально возможным расстоянием передачи данных, при котором еще обеспечивается требуемый уровень защиты данных. Легкая наращиваемость и простота расширения кабельной системы влияют на ее стоимость и безопасность передачи данных.

Витая пара.

Наиболее дешевым кабельным соединением является витое двухжильное проводное соединение часто называемое “витой парой” (англ. twisted pair ). Этот кабель состоит из двух или более медных проводников, защищенных пластиковой изоляцией и свитых между собой (рис. 4). Свитые проводники снаружи защищаются еще одним слоем изоляции. Свивание проводников уменьшает искажение полезного сигнала, связанное с передачей электрического тока по проводнику. С точки зрения физики процесс такого искажения называется интерференцией сигналов .

Она позволяет передавать информацию со скоростью до 10 Мбит/с, легко наращивается, однако является помехонезащищенной. Длина кабеля не может превышать 1000 м при скорости передачи 1 Мбит/с. Преимуществами являются низкая цена и безпроблемная установка. Для повышения помехозащищенности информации часто используют экранированную витую пару, т.е. витую пару, помещенную в экранирующую оболочку, подобно экрану коаксиального кабеля. Это увеличивает стоимость витой пары и приближает ее цену к цене коаксиального кабеля.

Рис.4. Витая пара

Коаксиальный кабель.

Этот кабель представляет собой медный проводник, по которому передается полезный сигнал. Проводник окружен изоляцией, поверх которой укладывается медная фольга или сетка, представляющая собой экран, защищающий центральный сигнальный провод от внешних электромагнитных помех. Благодаря использованию такой конструкции экран обеспечивает высокую степень защиты полезного сигнала от внешних помех, что позволяет без существенных потерь осуществлять передачу сигнала на достаточно большие расстояния. Существующие коаксиальные кабели подразделяют на два типа: тонкий и толстый.

Тонкий коаксиальный кабель внешне очень похож на современные кабели, используемые для подключения телевизионных антенн. Такой кабель не настолько гибок и удобен при монтаже, как неэкранированная витая пара, но тоже достаточно часто используется для построения локальных сетей. Разъемы, используемые для подключения тонкого коаксиального кабеля, называются ВМС-разъемами.

Толстый коаксиальный кабель очень похож на тонкий, но только он большего диаметра. Увеличение диаметра кабеля позволяет обеспечить его большую помехоустойчивость и соответственно гарантирует возможность передачи полезного сигнала на большие расстояния, чем тонкий коаксиальный кабель. Из-за более сложного процесса монтажа толстого кабеля (плохо гнется и требует специализированных разъемов) он распространен гораздо меньше.

Коаксиальный кабель имеет среднюю цену, хорошо помехозащищен и применяется для связи на большие расстояния (несколько километров). Скорость передачи информации от 1 до 10 Мбит/с, а в некоторых случаях может достигать 50 Мбит/с. Коаксиальный кабель используется для основной и широкополосной передачи информации.

Широкополосный коаксиальный кабель невосприимчив к помехам, легко наращивается, но цена его высокая. Скорость передачи информации равна 500 Мбит/с. При передачи информации в базисной полосе частот на расстояние более 1,5 км требуется усилитель, или так называемый репитер (англ. repeater – повторитель). Поэтому суммарное расстояние при передаче информации увеличивается до 10 км. Для вычислительных сетей с топологией типа “шина” или “дерево” коаксиальный кабель должен иметь на конце согласующий резистор (терминатор).

Рис. 5. Коаксиальный кабель:

1 - центральный провод; 2 - изолятор; 3 - экран;4 - внешний изолятор и защитная оболочка

Е thernet -кабель.

Ethernet-кабель также является коаксиальным кабелем с волновым сопротивлением 50 Ом. Его называют еще толстый Ethernet (англ. thick ) или желтый кабель (англ. yellow cable ). Он использует 15–контактное стандартное включение. Вследствие помехозащищенности является дорогой альтернативой обычным коаксиальным кабелям. Средняя скорость передачи данных 10 Мбит/с. Максимально доступное расстояние без повторителя не превышает 500 м., а общее расстояние сети Ethernet – около 3000 м. Ethernet-кабель, благодаря своей магистральной топологии, использует в конце лишь один нагрузочный резистор.

С heapern е t –кабель.

Более дешевым, чем Ethernet–кабель является соединение Cheapernet-кабель (RG –58) или, как его часто называют, тонкий (англ. thin ) Ethernet . Это также 50-омный коаксиальный кабель со скоростью передачи информации в 10 Мбит/с. При соединении сегментов Cheapernet –кабеля также требуются повторители. Вычислительные сети с Cheapernet–кабелем имеют небольшую стоимость и минимальные затраты при наращивании. Соединения сетевых плат производится с помощью широко используемых малогабаритных байонетных разъемов (СР.–50). Дополнительное экранирование не требуется. Кабель присоединяется к ПК с помощью тройниковых соединителей (T – connectors ). Расстояние между двумя рабочими станциями без повторителей может составлять максимум 300 м, а минимум – 0,5 м, общее расстояние для сети на Cheapernet–кабеля – около 1000 м. Приемопередатчик Cheapernet расположен на сетевой плате как для гальванической развязки между адаптерами, так и для усиления внешнего сигнала

Оптический кабель .

Он используется для передачи сигнала в виде световых импульсов. Оптический кабель обеспечивает очень низкие потери полезного сигнала и за счет этого позволяет передавать данные на очень большие расстояния (в настоящее время до нескольких десятков километров). В дополнение к этому благодаря использованию света в качестве сигнала обеспечивается полная защищенность от внешних электромагнитных помех. На рис. 6 представлена конструкция оптического кабеля ОК-М.

В качестве проводника в таких кабелях используется стеклянное или пластиковое волокно, защищенное снаружи изоляцией для обеспечения физической сохранности. Оптическое волокно является относительно дорогой средой передачи (по сравнению с витой парой и коаксиальным кабелем), но в настоящее время активно используется для построения высокоскоростных и протяженных линий связи.

Скорость распространения информации по ним достигает 100 Мбит/с, а на экспериментальных образцах оборудования – 200 Мбит/с. Допустимое удаление более 50 км. Внешнее воздействие помех практически отсутствует. На данный момент это наиболее дорогостоящее соединение для ЛВС. Применяются там, где возникают электромагнитные поля помех или требуется передача информации на очень большие расстояния без использования повторителей. Они обладают противоподслушивающими свойствами, так как техника ответвлений в оптоволоконных кабелях очень сложна. Оптопроводники объединяются в JIBC с помощью звездообразного соединения.

Рис. 6. Конструкция оптического кабеля:

1 - оптическое волокно; 2,4- заполнитель; 3 - центральный силовой элемент (стальной трос); 5 - защитная оболочка

Беспроводные среды передачи данных

В беспроводных средах передачи сигналы могут передаваться с использованием различного рода излучений, например, радиоволны, микроволновое излучение, инфракрасное излучение и т.п. В сети полезный сигнал всегда передается в виде волн с использованием той или иной среды передачи. Например, при использовании кабельных сред передачи сигнал передается в форме электромагнитных волн определенной частоты. В случае использования оптического кабеля сигнал передается в виде световых волн (это те же электромагнитные волны, но только гораздо большей частоты). При передаче сигналов с использованием атмосферы используются электромагнитные волны, передающиеся на частоте радиоволн, СВЧ - или инфракрасного излучения.

Показатели трех наиболее типичных средств коммуникаций для передачи данных приведены в таблице № 1.

Таблица 1

Основные показатели средств коммуникации.

Показатели

Средства коммуникаций для передачи данных

Двух жильная кабель,–витая пара

Коаксиальный кабель

Оптоволоконный кабель

Цена

Невысокая

Относительно высокая

Высокая

Наращивание

Очень простое

Проблематично

Простое

Защита от прослушивания

Незначительная

Хорошая

Высокая

Проблемы с заземлением

Нет

Возможны

Нет

Восприимчивость к помехам

Существует

Существует

Отсутствует

Существует ряд принципов построения ЛВС на основе выше рассмотренных компонентов. Такие принципы еще называют топологиями.

Топологии вычислительных сетей.

Компьютерную сеть представляют как совокупность узлов (компьютеров и сетевого оборудования) и соединяющих их ветвей (каналов связи). Ветвь сети - это путь, соединяющий два смежных узла. Различают узлы оконечные , расположенные в конце только одной ветви, промежуточные , расположенные на концах более чем одной ветви, и смежные - такие узлы соединены по крайней мере одним путём, не содержащим никаких других узлов. Компьютеры могут объединяться в сеть разными способами.

Топология типа “звезда”.

Концепция топологии сети в виде звезды пришла из области больших ЭВМ, в которой головная машина получает и обрабатывает все данные с периферийных устройств как активный узел обработки данных. Этот принцип применяется в системах передачи данных, например, в электронной почте сети Rel Com . Вся информация между двумя периферийными рабочими местами проходит через центральный узел вычислительной сети.

Рис. 7. Структура топологии ЛВС в виде “звезды”.

Пропускная способность сети определяется вычислительной мощностью узла и гарантируется для каждой рабочей станции. Коллизий (столкновений) данных не возникает.

Кабельное соединение довольно простое, так как каждая рабочая станция связана с узлом. Затраты на прокладку кабелей высокие, особенно когда центральный узел географически расположен не в центре топологии.

При расширении вычислительных сетей не могут быть использованы ранее выполненные кабельные связи: к новому рабочему месту необходимо прокладывать отдельный кабель из центра сети.

Топология в виде звезды является наиболее быстродействующей из всех топологий вычислительных сетей, поскольку передача данных между рабочими станциями проходит через центральный узел (при его хорошей производительности) по отдельным линиям, используемым только этими рабочими станциями. Частота запросов передачи информации от одной станции к другой невысокая по сравнению с достигаемой в других топологиях.

Производительность вычислительной сети в первую очередь зависит от мощности центрального файлового сервера. Он может быть узким местом вычислительной сети. В случае выхода из строя центрального узла нарушается работа всей сети.

Центральный узел управления – файловый сервер реализует оптимальный механизм защиты против несанкционированного доступа к информации. Вся вычислительная сеть может управляться из ее центра.

Кольцевая топология.

При кольцевой топологии сети рабочие станции связаны одна с другой по кругу, т.е. рабочая станция 1 с рабочей станцией 2, рабочая станция 3 с рабочей станцией 4 и т.д. Последняя рабочая станция связана с первой. Коммуникационная связь замыкается в кольцо.

Рис.8. Структура кольцевой топологии ЛВС.

Прокладка кабелей от одной рабочей станции до другой может быть довольно сложной и дорогостоящей, особенно если географическое расположение рабочих станций далеко от формы кольца (например, в линию).

Сообщения циркулируют регулярно по кругу. Рабочая станция посылает по определенному конечному адресу информацию, предварительно получив из кольца запрос. Пересылка сообщений является очень эффективной, так как большинство сообщений можно отправлять “в дорогу” по кабельной системе одно за другим. Очень просто можно сделать кольцевой запрос на все станции. Продолжительность передачи информации увеличивается пропорционально количеству рабочих станций, входящих в вычислительную сеть.

Основная проблема при кольцевой топологии заключается в том, что каждая рабочая станция должна активно участвовать в пересылке информации, и в случае выхода из строя хотя бы одной из них вся сеть парализуется. Неисправности в кабельных соединениях локализуются легко.

Подключение новой рабочей станции требует кратко срочного выключения сети, так как во время установки кольцо должно быть разомкнуто. Ограничения на протяженность вычислительной сети не существует, так как оно, в конечном счете, определяется исключительно расстоянием между двумя рабочими станциями.

Специальной формой кольцевой топологии является логическая кольцевая сеть. Физически она монтируется как соединение звездных топологий. Отдельные звезды включаются с помощью специальных коммутаторов (англ. Hub – концентратор), которые по-русски также иногда называют “хаб”. В зависимости от числа рабочих станций и длины кабеля между рабочими станциями применяют активные или пассивные концентраторы. Активные концентраторы дополнительно содержат усилитель для подключения от 4 до 16 рабочих станций. Пассивный концентратор является исключительно разветвительным устройством (максимум на три рабочие станции). Управление отдельной рабочей станцией в логической кольцевой сети происходит так же, как и в обычной кольцевой сети. Каждой рабочей станции присваивается соответствующий ей адрес, по которому передается управление (от старшего к младшему и от самого младшего к самому старшему). Разрыв соединения происходит только для нижерасположенного (ближайшего) узла вычислительной сети, так что лишь в редких случаях может нарушаться работа всей сети.

Рис. 9. Структура логической кольцевой цепи ЛВС.

Шинная топология.

При шинной топологии среда передачи информации представляется в форме коммуникационного пути, доступного дня всех рабочих станций, к которому они все должны быть подключены. Все рабочие станции могут непосредственно вступать в контакт с любой рабочей станцией, имеющейся в сети.

Рис.10. Структура шинной топологии ЛВС.

Рабочие станции в любое время, без прерывания работы всей вычислительной сети, могут быть подключены к ней или отключены. Функционирование вычислительной сети не зависит от состояния отдельной рабочей станции.

В стандартной ситуации для шинной сети Ethernet часто используют тонкий кабель или Cheapernet –кабель с тройниковым соединителем. Отключение и особенно подключение к такой сети требуют разрыва шины, что вызывает нарушение циркулирующего потока информации и зависание системы.

Новые технологии предлагают пассивные штепсельные коробки, через которые можно отключать и/или подключать рабочие станции во время работы вычислительной сети.

Благодаря тому, что рабочие станции можно подключать без прерывания сетевых процессов и коммуникационной среды, очень легко прослушивать информацию, т.е. ответвлять информацию из коммуникационной среды.

В ЛВС с прямой (не модулируемой) передачей информации всегда может существовать только одна станция, передающая информацию. Для предотвращения коллизий в большинстве случаев применяется метод разделения, согласно которому для каждой подключенной рабочей станции в определенные моменты времени предоставляется исключительное право на использование канала передачи данных. Поэтому требования к пропускной способности вычислительной сети при повышенной нагрузке повышаются, например, при вводе новых рабочих станций. Рабочие станции присоединяются к шине посредством устройств ТАР (англ. Terminal Access Point – точка подключения терминала). ТАР представляет собой специальный тип подсоединения к коаксиальному кабелю. Зонд игольчатой формы внедряется через наружную оболочку внешнего проводника и слой диэлектрика к внутреннему проводнику и присоединяется к нему.

В ЛВС с модулированной широкополосной передачей информации различные рабочие станции получают, по мере надобности, частоту, на которой эти рабочие станции могут отправлять и получать информацию. Пересылаемые данные модулируются на соответствующих несущих частотах, т.е. между средой передачи информации и рабочими станциями находятся соответственно модемы для модуляции и демодуляции. Техника широкополосных сообщений позволяет одновременно транспортировать в коммуникационной среде довольно большой объем информации. Для дальнейшего развития дискретной транспортировки данных не играет роли, какая первоначальная информация подана в модем (аналоговая или цифровая), так как она все равно в дальнейшем будет преобразована.

Основные характеристики трех наиболее типичных типологий вычислительных сетей приведены в таблице № 2.

Таблица 2

Основные характеристики топологий вычислительных сетей.

Характеристики

Топологии вычислительных сетей

Звезда

Кольцо

Шина

Стоимость расширения

Незначительная

Средняя

Средняя

Присоединение абонентов

Пассивное

Активное

Пассивное

Защита от отказов

Незначительная

Незначительная

Высокая

Размеры системы

Любые

Любые

Ограниченны

Защищенность от прослушивания

Хорошая

Хорошая

Незначительная

Стоимость подключения

Незначительная

Незначительная

Высокая

Поведение системы при высоких нагрузках

Хорошее

Удовлетворительное

Плохое

Возможность работы в реальном режиме времени

Очень хорошая

Хорошая

Плохая

Разводка кабеля

Хорошая

Удовлетворительная

Хорошая

Обслуживание

Очень хорошее

Среднее

Среднее

Древовидная структура ЛВС.

Наряду с известными топологиями вычислительных сетей “кольцо”, “звезда” и “шина”, на практике применяется и комбинированная, на пример древовидна структура. Она образуется в основном в виде комбинаций вышеназванных топологий вычислительных сетей. Основание дерева вычислительной сети (корень) располагается в точке, в которой собираются коммуникационные линии информации (ветви дерева).

Вычислительные сети с древовидной структурой применяются там, где невозможно непосредственное применение базовых сетевых структур в чистом виде. Для подключения большого числа рабочих станций соответственно адаптерным платам применяют сетевые усилители и/или коммутаторы. Коммутатор, обладающий одновременно и функциями усилителя, называют активным концентратором.

На практике применяют две их разновидности, обеспечивающие подключение соответственно восьми или шестнадцати линий.

Устройство к которому можно присоединить максимум три станции, называют пассивным концентратором. Пассивный концентратор обычно используют как разветвитель. Он не нуждается в усилителе. Предпосылкой для подключения пассивного концентратора является то, что возможное максимальное расстояние до рабочей станции не должно превышать нескольких десятков метров.

Рис.6. Древовидная структура ЛВС

Архитектура сети

Важнейшая характеристика компьютерной сети - её архитектура. Архитектура сети - это реализованная структура сети передачи данных, определяющая её топологию, состав устройств и правила их взаимодействия в сети. В рамках архитектуры сети рассматриваются вопросы кодирования информации, её адресации и передачи, управления потоком сообщений, контроля ошибок и анализа работы сети в аварийных ситуациях и при ухудшении характеристик.

Наиболее распространённые архитектуры

Локальная сеть Token Ring

Этот стандарт разработан фирмой IBM. В качестве передающей среды применяется неэкранированная или экранированная витая пара (англ. UPT или SPT) или оптоволокно. Скорость передачи данных 4 Мбит/с или 16Мбит/с. В качестве метода управления доступом станций к передающей среде используется метод – маркерное кольцо (англ. То ken Ring ). Основные положения этого метода:

    устройства подключаются к сети по топологии кольцо;

    все устройства, подключенные к сети, могут передавать данные, только получив разрешение на передачу (маркер);

    в любой момент времени только одна станция в сети обладает таким правом.

Типы пакетов.

В I ВМ То ken Ring используются три основных типа пакетов:

    пакет “управление/данные” (англ. Data/Соmmand Frame);

    пакет “маркер” (англ. Token );

    пакет “сброса” (англ. Abort ).

Пакет “Управление/Данные” .

С помощью такого пакета выполняется передача данных или команд управления работой сети.

Пакет “Маркер”.

Станция может начать передачу данных только после получения такого пакета, В одном кольце может быть только один маркер и, соответственно, только одна станция с правом передачи данных.

Пакет “Сброса”.

Посылка такого пакета называет прекращение любых передач.

В сети можно подключать компьютеры по топологии звезда или кольцо.

Локальная сеть ArcNet .

ArcNet (англ. Attached Resource Computer Network ) – простая, недорогая, надежная и достаточно гибкая архитектура локальной сети. Разработана корпорацией Datapoint в 1977 году. Впоследствии лицензию на ArcNet приобрела корпорация S MC (англ. Standard Microsystems Corporation ), которая стала основным разработчиком и производителем оборудования для сетей ArcNet. В качестве передающей среды используются витая пара, коаксиальный кабель (RG–62) с волновым сопротивлением 93 Ом и оптоволоконный кабель. Скорость передачи данных – 2,5 Мбит/с, существует также расширенная версия – ArcNetplus – поддерживает передачу данных со скоростью 20 Мбит/с. При подключении устройств в ArcNet применяют топологии шина и звезда. Метод управления доступом станций к передающей среде – маркерная шина (англ. Token Bus ). Этот метод предусматривает следующие правила:

    Все устройства, подключенные к сети, могут передавать данные

    только получив разрешение на передачу (маркер);

    В любой момент времени только одна станция в сети обладает таким правом;

    Данные, передаваемые одной станцией, доступны всем станциям сети.

Основные принципы работы.

Передача каждого байта в ArcNet выполняется специальной посылкой ISU (англ. Information Symbol Unit – единица передачи информации), состоящей из трех служебных старт/стоповых битов и восьми битов данных. В начале каждого пакета передается начальный разделитель АВ (англ. Alert Burst ), который состоит из шести служебных битов. Начальный разделитель выполняет функции преамбулы пакета.

В ArcNet определены 5 типов пакетов:

    Пакет ITT (англ. Information to Transmit) – приглашение к передаче . Эта посылка передает управление от одного узла сети к другому. Станция, принявшая этот пакет, получает право на передачу данных.

    Пакет FBE (англ. Free Buffer Enquiries ) – запрос о готовности к приему данных. Этим пакетом проверяется готовность узла к приему данных.

    Пакет данных. С помощью этой посылки производиться передача данных.

    Пакет АСК (англ. ACKnowledgments ) – подтверждение приема. Подтверждение готовности к приему данных или подтверждение приема пакета данных без ошибок, т.е. в ответ на FBE и пакет данных.

    Пакет NAK (англ. Negative AcKnowledgments ) – неготовность к приему. Неготовность узла к приему данных (ответ на FBE) или принят пакет с ошибкой.

В сети ArcNet можно использовать две топологии: “звезда” и “шина”.

Локальная сеть Ethernet

Спецификацию Ethernet в конце семидесятых годов предложила компания Xerox Corporation . Позднее к этому проекту присоединились компании Digital Equipment Corporation (DEC ) и Intel Corporation . В 1982 году была опубликована спецификация на Ethernet версии 2.0. На базе Ethernet институтом IEEE был разработан стандарт IEEE 802.3. Различия между ними незначительные.

Основные принципы работы.

На логическом уровне в Ethernet применяется топология шина:

    все устройства, подключенные к сети, равноправны, т.е. любая станция может начать передачу в любой момент времени (если передающая среда свободна);

    данные, передаваемые одной станцией, доступны всем станциям сети.

Таблица 3

Основные характеристики сетей по методам передачи информации.

Характеристики

Методы передачи информации

Ethernet

Token Ring

ArcNet

Топология

Локальная типа “шина”

Кольцевая или типа “звезда”

Наборы сегментов типа “звезда”

Тип кабеля

RG –58

Экранированная или неэкранированная витая пара

RG –62 или RG –59

Импеданс

50 Ом

Сопротивление терминаторов

50 Ом, ± 2 Ом

100 – 200 Ом UTP , 150 Ом TP

RG –59: 75 Ом

RG –62: 93 Ом

Максимальная длина кабеля в сегменте

185 м

45 – 200 м (в зависимости от используемого кабеля)

В зависимости от используемого кабеля, но в среднем:

W–W: 120 м

A–A: 606 м

P–W или P–A: 30 м

A–A: 0,3 м

Минимальный промежуток между соседними компьютерами

0,5 м

2,5 м

Максимальное количество соединенных сегментов

33 устройства MAU

Не поддерживает соединения сегментов

Максимальное количество компьютеров в сегменте

Неэкранированная витая пара: 72 рабочих станции на концентратор, при использовании экранированной витой пары – 260 рабочих станций на концентратор

В зависимости от используемого кабеля

Локальная сеть FDDI (Fiber Distributed Data Interface)
Локальная сеть c сетевой архитектурой высокоскоростной передачи данных по оптоволоконным линиям. Скорость передачи - 100 Мбит/сек. Топология - двойное кольцо или смешанная (с включением звездообразных или древовидных подсетей). Максимальное количество станций в сети - 1000. Очень высокая стоимость оборудования.
Локальная сеть АТМ (Asynchronous Transfer Mode)
Локальная сеть с дорогой архитектурой обеспечивает передачу цифровых данных, видеоинформации и голоса по одним и тем же линиям. Скорость передачи до 2,5 Гбит/сек. Линии связи оптические.

Сетевые операционные системы для локальных сетей.

Основное направление развития современных Сетевых Операционных Систем (англ. Network Operation System – NOS) – перенос вычислительных операций на рабочие станции, создание систем с распределенной обработкой данных. Это в первую очередь связано с ростом вычислительных возможностей персональных компьютеров и все более активным внедрением мощных многозадачных операционных систем: OS/2, Windows NT и Windows 95. Кроме этого внедрение объектно–ориентированных технологий (OLE , ActiveX , ODBC и т.д.) позволяет упростить организацию распределенной обработки данных. В такой ситуации основной задачей NOS становится объединение неравноценных операционных систем рабочих станций и обеспечение транспортного уровня для широкого круга задач: обработка баз данных, передача сообщений, управление распределенными ресурсами сети (англ. directory / name service ).

В современных NOS применяют три основных подхода к организации управления ресурсами сети.

Первый – это Таблицы Объектов (англ. Bindery ). Используется в сетевых операционных системах NetWare 28б и NetWare 3. XX . Такая таблица находится на каждом файловом сервере сети. Она содержит информацию о пользователях, группах, их правах доступа к ресурсам сети (данным, сервисным услугам, печати через сетевой принтер и т.п.). Такая организация работы удобна, если в сети только один сервер. В этом случае требуется определить и контролировать только одну информационную базу. При расширении сети, добавлении новых серверов объем задач по управлению ресурсами сети резко возрастает. Администратор системы вынужден на каждом сервере сети определять и контролировать работу пользователей. Абоненты сети, в свою очередь, должны точно знать, где расположены те или иные ресурсы сети, а для получения доступа к этим ресурсам – регистрироваться на выбранном сервере. Конечно, для информационных систем, состоящих из большого количества серверов, такая организация работы не подходит.

Второй подход используется в LANServer и Windows NT Server – Структура Доменов (англ. Domain ). Все ресурсы сети и пользователи объединены в группы. Домен можно рассматривать как аналог таблиц объектов (англ. bindery ), только здесь такая таблица является общей для нескольких серверов, при этом ресурсы серверов являются общими для всего домена. Поэтому пользователю для того чтобы получить доступ к сети, достаточно подключиться к домену (зарегистрироваться), после этого ему становятся доступны все ресурсы домена, ресурсы всех серверов и устройств, входящих в состав домена. Однако и с использованием этого подхода также возникают проблемы при построении информационной системы с большим количеством пользователей, серверов и, соответственно, доменов, например, сети для предприятия или большой разветвленной организации. Здесь эти проблемы уже связаны с организацией взаимодействия и управления несколькими доменами, хотя по содержанию они такие же, как и в первом случае.

Третий подход – Служба Наименований Директорий или Каталогов (англ. Directory Name Services – DNS) лишенэтихнедостатков. Все ресурсы сети: сетевая печать, хранение данных, пользователи, серверы и т.п. рассматриваются как отдельные ветви или директории информационной системы. Таблицы, определяющие DNS, находятся на каждом сервере. Это, во–первых, повышает надежность и живучесть системы, а во-вторых, упрощает обращение пользователя к ресурсам сети. Зарегистрировавшись на одном сервере, пользователю становятся доступны все ресурсы сети. Управление такой системой также проще, чем при использовании доменов, так как здесь существует одна таблица, определяющая все ресурсы сети, в то время как при доменной организации необходимо определять ресурсы, пользователей, их права доступа для каждого домена отдельно.

В настоящее время наиболее распространенными сетевыми операционными системами являются NetWare 3. XX и 4. XX (Novell Inc .), Windows N Т Server 3.51 и 4.00 (Microsoft Corp .) и LAN Server (I ВМ Со r р.).

Рассмотрим более подробно возможности этих и некоторых других сетевых операционных систем и требования, которые они предъявляют к программному и аппаратному обеспечению устройств сети.

LAN Server, IВМ Соrр.

Отличительные черты:

    использование доменной организации сети упрощает управление и доступ к ресурсам сети;

    обеспечивает полное взаимодействие с иерархическими системами (архитектурой SNA).

Целостная операционная система с широким набором услуг. Работает на базе O S/2, поэтому сервер может быть невыделенным (англ. nondedicated ). Обеспечивает взаимодействие с иерархическими системами, поддерживает межсетевое взаимодействие.

Выпускаются две версии LAN Server : Entry и Advanced . Advanced в отличие от Entry поддерживает высокопроизводительную файловую систему (англ. High Performance File System – HPFS). Она включает системы отказоустойчивости (англ. Fail Tolerances ) и секретности (англ. Local Security ).

Серверы и пользователи объединяются в домены. Серверы в домене работают как единая логическая система. Все ресурсы домена доступны пользователю после регистрации в домене. В одной кабельной системе могут работать несколько доменов. При использовании на рабочей станции OS/2 ресурсы этих станций доступны пользователям других рабочих станций, но только одному в данное время. Администратор может управлять работой сети только с рабочей станции, на которой установлена операционная система OS/2. LAN Server поддерживает удаленную загрузку рабочих станций DOS, OS/2 и Windows (англ. Remote Interface Procedure Load – RIPL).

К недостаткам можно отнести:

    сложная процедура установки NOS;

    ограниченное количество поддерживаемых драйверов сетевых адаптеров.

Windows NT Server, Microsoft Corp.

Отличительные черты:

    простота интерфейса пользователя;

    доступность средств разработки прикладных программ и поддержка прогрессивных объектно-ориентированных технологий;

    поддержка RISC –процессоров;

    поддержка инсталлируемых файловых систем;

    взаимодействие с Macintosh .

Всё это привело к тому, что эта операционная система становиться одной из самых популярных сетевых операционных систем.

Интерфейс Windows NT 4.0 аналогичен оконному интерфейсу Windows 95, инсталляция может занимать от 1 до 2 часов. Модульное построение системы упрощает внесение изменений и перенос на другие платформы, Windows NT разрабатывалась с учетом возможности поддержки таких высокопроизводительных RISC –процессоров, как PowerPC , DEC Alpha AXP и MIPS , еще одна возможность которая повышает ее переносимость, – возможность поддержки инсталлируемых файловых систем. В настоящее время поддерживаются FAT (англ. File Allocation Table – таблица размещения файлов, используется в DOS –системах), NTFS (англ. NT File System файловая система NT , разработана специально для Windows NT ), CDFS (файловая система CD – ROM ), файловая система Macintosh и HPFS (англ. High Performance File System – файловая система высокой производительности, используется в OS /2; не поддерживается в Windows NT 4.0 напрямую – активизация поддержки HPFS требует выполнения специальных процедур). Обеспечивается защищенность подсистем от несанкционированного доступа и благодаря многозадачности с вытеснением от их взаимного влияния (если зависает один процесс, это не влияет на работу остальных). Есть поддержка удаленного доступа к сети (например, через модем или нуль модемный кабель) – Remote Access Service (англ. RAS ), поддерживается удаленная обработка заданий.

Windows NT предъявляет более высокие требования к производительности компьютера по сравнению с NetWare .

Организация сети.

Объединение локальных сетей отделов и “рабочих групп”, информационно связанных по функциональному взаимодействию при решении их производственных задач осуществляется по принципу “клиент–сервер” с последующим предоставлением сводной результирующей технологической и финансово-экономической информации на уровень АРМ руководителей предприятия (и объединения, в дальнейшем) для принятия управленческих решений.

Программно–структурная организация сети.

Предлагается решить данную задачу путем создания на основе Novell технологий и операционной системы Novell NetWare 4. XX корпоративную сеть предприятия по принципу “распределенная звезда”, работающую под управлением нескольких серверов и, поддерживая основные транспортные протоколы (T Level 5;

коммутирующие панели TP Patch Panel ;

соединители T – connector ;

концевые радиочастотные терминаторы.

Применение оптоволоконных линий связи оправдано значительным удалением производственных объектов и зданий друг от друга и высоким уровнем индустриальных помех. Кабели RG–58 используются при подключении к сети автоматизированных промышленных установок, также требующих защиты обрабатываемой на этих АРМах и передаваемой на другие АРМы технологической и другой информации от различного вида индустриальных помех. “Витая пара” 10Base– T Level 5 используется для подключения рабочих станций пользователей сети в местах, не требующих повышенных требований к защите среды передачи информации от помех. Novell NetWare 4.1 и Windows NT Server 4.00 соответственно. Серверы, кроме своего прямого назначения обработки и хранения информации, решают задачу маршрутизации и транспортировки информации, с одной стороны снижая нагрузку на основные информационные магистрали и с другой – обеспечивают прозрачный доступ к информации других серверов.

Серверы будут обслуживать около 60–ти рабочих станций, обрабатывающих различного вида технологическую информацию, а также свыше 40–ка рабочих станций в административно–управленческих и финансово–экономических подразделениях предприятия.

В качестве сетевых аппаратных средств серверов и рабочих станций используются следующие сетевые адаптерные карты:

    NE–2000;

    NE–3200;

    SMC8634;

    SMC8834;

Сетевые протоколы – IEEE 802.2, IEEE 802.3 CSMA/CD.

Транспортные протоколы – IPX/SPX – для NetWare– серверов , TCP/IP и NetBEUI – для Windows NT– сервера .

Для программно–аппаратного объединения сетевых сред NetWare и Windows NT Server необходимо использовать программный мост на базе совмещенного транспортного протокола IPX/ SPX , в дальнейшем возможен полный переход на сетевую интегрированную ОС Windows NT Server.

Наряду с сетевой ОС NetWare 4. XX для групп клиентов, функционально взаимосвязанных между собой при решении производственных задач, используется сетевая среда Artisoft LANtastic 6.0 и выше, Windows 3.11 for Workgroups и Windows 95 предоставляющие прозрачный доступ пользователям этих одноранговых сетей к информации друг друга. В то же время пользователи среды LANtastic 6.0 и выше, Windows 3.11 for Workgroups и Windows 95 являются клиентами NetWare –серверов и Windows NT –сервера, имея доступ к их ресурсам и информации на жестких дисках в соответствии со своими правами и привилегиями.

Таким образом, мы получили реально работающую корпоративную сеть, имеющую множество оригинально работающих узлов и принципов решений, данная задачи на сегодня является одной из самых интересных и передовых в мире в области информационных технологий. Эта сеть даст в дальнейшем возможность переходить на новые более мощные программные и аппаратные средства связи и коммуникаций, которые будут разработаны в мире, так как вся сеть реализована на основе OSI и полностью соответствует мировым стандартам.

Настройка сетевых средств Windows .

В настоящее время наиболее распространенной операционной системой для персональных компьютеров является система Windows. В состав этой операционной системы включены средства для создания одноранговых компьютерных сетей.

Настройка сетевой платы.

Процесс настройки сети следует начать с установки сетевой платы, причем сделать это можно как при установке самой операционной системы, так и позже, в процессе работы. Если сетевые адаптеры соответствуют стандарту plug-and-play, при загрузке операционная система автоматически распознает установленную сетевую плату и осуществляет настройку.

Если плата не поддерживает формат plug-and-play , запустите "Панель управления" и дважды щелкните на пиктограмме "Установка оборудования". Это приведет к запуску мастера установки оборудования. Щелкнув на кнопке "Далее", переходите к диалоговому окну, где Windows предложит осуществить автоматический поиск новых установленных устройств.

Целесообразно предоставить операционной системе возможность самой опознать аппаратные средства. Если это ей удастся, то не придется вручную вводить информацию об устройстве.

Если Windows не смогла опознать сетевой адаптер, то его установку и настройку придется выполнить вручную. После щелчка на кнопке "Далее" будет выведено диалоговое окно в котором необходимо указать тип устанавливаемого устройства, дважды щелкнув на строке "Сетевые платы".

В результате этого откроется следующее диалоговое окно, в котором необходимо выбрать изготовителя и модель сетевой платы из предложенного списка. Выбор осуществляется щелчком на соответствующей строке списка. После выбора сетевой платы Windows выводит диалоговое окно, в котором указываются параметры установленной платы.

Вид и объем выводимой информации зависит от типа платы. Если сетевая плата опознана в автоматическом режиме, то параметры, демонстрируемые в диалоговом окне, устанавлива ются Windows. Если система не опознает сетевую карту, то параметрам присваиваются значения по умолчанию, что довольно часто приводит к конфликтам с другими устройствами. В этом случае нужно, изменив параметры, устранить конфликты. После этого система производит установку программного обеспечения, необходимого для работы сетевой платы. Можно воспользоваться стандартным драйвером, имеющимся на дистрибутивном диске Windows. Если таковой отсутствует или по какой-либо причине не устраивает вас, используйте драйвер на диске, поставляемой вместе с адаптером (кнопка "Установить с диска").

Настройка сети.

Следующий шаг установка и конфигурация необходимых сетевых протоколов. Дважды щелкните на пиктограмме "Сеть" в "Панели управления". В окне "Сеть" представлены установленные компоненты сетевого программного обеспечения. Сопоставьте сетевой карте протоколы, необходимые для работы нужных вам клиентов (по умолчанию в Windows в качестве сетевого протокола устанавливаются NETBEUI и NetWare IPX/SPX). Для этого необходимо нажать кнопку "Добавить" на вкладке "Конфигурация".

В появившемся окне "Выбор типа компонента" нужно выбрать пункт "Протокол" и нажать кнопку "Добавить". Затем в окне "Выбор: Сетевой протокол" указывается, во-первых, фирма-изготовитель и, во-вторых, требующийся сетевой протокол, например, фирма Microsoft, протокол IPX/SPX. После этого нужно вернуться в окно "Сеть", a IPX/SPX будет уже фигурировать как поддерживаемый протокол. Чтобы начать процесс настройки, либо дважды щелкните на элементе списка, либо выберите его и щелкните на кнопке "Свойства", после чего появится диалоговое окно "Свойства".

Находясь в диалоговом окне "Свойства: IPX/SPX-совместимый протокол", можно получить доступ к трем вкладкам: "Привязка" Дополнительно" и "NetBIOS".

Вкладка "Привязка". На этой вкладке перечислены компоненты сети, использующие протокол. Если вы установили другие протоколы, то в списке будут указаны еще и дополнительные элементы. Выберите из списка только те элементы, которые используют протокол IPX/SPX. Минимизация количества привязок для каждого протокола позволяет значительно повысить эффективность работы сетевого ПО.

Вкладка "NetBIOS" позволяет включить поддержку протокола NetBIOS протоколом IPX/SPX, что позволит запускать приложения, использующие протокол NetBIOS.

Дополнительные настройки, такие как тип пакета, сетевой адрес, максимальное число подключений и другие, определяются на вкладке «Дополнительно».

Установка сетевых клиентов и служб.

Для подключения рабочей станции к сети необходимо установить соответствующие клиенты и службы. Так, например, для организации одноранговой сети Windows необходимо установить на каждой рабочей станции клиент для сетей Microsoft и службу доступа к файлам и принтерам для сетей Microsoft .

Для установки новых служб и клиентов необходимо нажать кнопку «Добавить» и воспользоваться знакомым уже окном «Выбор типа компонента» . В зависимости от вашего выбора появляется окно «Выбор: Клиент сети» или «Выбор: Сетевая служба» .

Кнопка «Доступ к файлам и принтерам» предназначена для вызова окна «Организация доступа к файлам и принтерам», с помощью которого указывается, можно ли делать общими (т.е. разделять между пользователями) ресурсы данного компьютера.

После установки клиенты и службы должны быть правильно настроены. Настройка клиента для сетей Microsoft производится с помощью окна «Свойства: Клиент для сетей Microsoft ” . Устанавливаются параметры входа в сеть - вход с восстановлением подключений сетевых ресурсов или быстрый вход, когда ресурсы подключаются по мере необходимости. При восстановлении подключений вход производится гораздо медленнее, особенно, если какой-либо сетевой ресурс в данный момент не готов к подключению.

После установки клиентов выбирается способ входа в сеть: либо обычный вход в Windows , либо с использованием одного из клиентов.

Если установлен вход в сеть с помощью клиента для сетей Microsoft , ннеобходимо ввести имя пользователя, пароль, после чего нажать кнопку «ОК». При нажатии кнопки «Отмена» будет произведен обычный вход в Windows , но сетевые ресурсы при этом будут недоступны.

Во время работы с окном «Сеть», если это еще не сделано, желательно установить на каждой рабочей станции в сети службы доступа к файлам и принтерам. Кроме того, воспользовавшись вкладкой «Компьютер», необходимо присвоить каждому компьютеру уникальное сетевое имя, при этом имя рабочей группы должно быть одним и тем же. В простой одноранговой сети на основе Windows все это сразу же позволит разделять ресурсы других компьютеров, например их диски и принтеры.

Совместное использование ресурсов: периферийных устройств, дисков, файлов.

С помощью вкладки «Управление доступом» устанавливается способ управления доступом к общим ресурсам. Имеются два варианта:

управление на уровне пользователей (к ресурсу получают доступ определенные пользователи или группы пользователей, причем список пользователей берется с указанного сервера)

или на уровне ресурсов (каждый ресурс имеет пароль доступа, подключиться может любой пользователь, знающий этот пароль).

В процессе работы с Windows при необходимости можно определить локальный ресурс вашего компьютера как общий в сети. Для этого необходимо воспользоваться вкладкой «Доступ окна Свойства данного ресурса». Открыть это окно можно различными способами:

1. Воспользовавшись окном «Мой компьютер» или «Проводник», выбрать нужный объект и вызвать команду «Файл/Свойства» вкладка «Доступ» или команду «Файл/Доступ» (открывается то же окно «Свойства», но сразу на нужной вкладке)

2. Воспользовавшись окном «Мой компьютер» или «Проводник», вызвать контекстное меню для нужного объекта и выбрать команду «Свойства», вкладка «Доступ» или команду «Доступ».

По умолчанию установлена опция «Локальный ресурс». После выбора альтернативного варианта - «Общий ресурс» - становятся доступными остальные поля. Поле «Сетевое имя» предназначено для указания имени, под которым ресурс будет известен в сети. По умолчанию это поле содержит «локальное» имя ресурса. В поле «Заметки» можно указать краткие сведения о ресурсе. С помощью поля «Тип доступа» можно указать, что удаленному пользователю разрешено делать с объектом. Для этого выбирается один из следующих вариантов доступа.

1. Только чтение – в поле «Пароль: Для чтения» можно установить пароль, содержащий от одного до восьми символов, хотя это не обязательно.

2. Полный доступ - необязательный пароль можно задать в поле «Пароль: Для полного доступа». Желательно разрешать только на короткое время и устанавливать пароль, иначе кто-либо может повредить ваши файлы.

3. Определяется паролем - можно условно разделить всех пользователей на две категории: тех кому вы доверяете, и тех, кто вызывает у вас сомнения. Первым можно сообщить пароль для полного доступа, но нужно помнить об имеющейся опасности потери данных. Второй категории можно сообщить пароль для чтения, если есть такая необходимость.

После того, как произведены все настройки, нажимается кнопка «ОК» или «Применить» С этого момента ресурс доступен в сети.

Получить доступ по сети к общему ресурсу можно, воспользовавшись окном «Сетевое окружение». Сначала необходимо найти ярлык, соответствующий компьютеру в сети, и выполнить на нем двойной щелчок. В окне отобразятся все ресурсы, которые имеются на данном компьютере и определены как общие. После этого выбирается нужный ресурс. Если производится управление доступом на уровне ресурсов, система попросит ввести пароль (если он, конечно, был установлен для данного объекта). Если же производится управление доступом на уровне пользователей, система проверит, имеет ли пользователь право обращаться к этому ресурсу. Если все проверки пройдут успешно, вы получаете возможность работать с нужным объектом.

Опишите организацию хранения файлов на дисках компьютера.

Перечислите функции операционной системы по обслуживанию файловой структуры.

Виды компьютерных сетей.

В зависимости от территориального расположения абонентских систем вычислительные сети можно разделить на три основных класса:

· локальные сети;

· региональные сети;

· глобальные сети.

Локальные сети (ЛС) представляющие собой самую элементарную форму сетей, соединяют абонентов, расположенных в пределах небольшой территории. Каждый ПК в локальной сети называется рабочей станцией или сетевым узлом.

Региональные сети связывают абонентов, расположенных на значительном расстоянии друг от друга, внутри города, экономического района.

Глобальные сети объединяют абонентов, расположенных в различных странах, на различных континентах, позволяют решить проблему объединения информационных ресурсов всего человечества и организации доступа к этим ресурсам.

Любая компьютерная сеть характеризуется: топологией, протоколами, интерфейсами, сетевыми техническими и программными средствами.

Топология - компьютерной сети отражает структуру связей между ее основными функциональными элементами.

Сетевые технические средства - это различные устройства, обеспечивающие объединение компьютеров в единую компьютерную сеть.

Сетевые программные средства - осуществляют управление работой компьютерной сети и обеспечивают соответствующий интерфейс с пользователями.

Протоколы - представляют собой правила взаимодействия функциональных элементов сети.

Интерфейсы - средства сопряжения функциональных элементов сети.

2, Базовые сетевые топологии.

Топология локальной сети

При создании сети в зависимости от задач, которые она должна будет выполнять, может быть реализована одна из четырех сетевых топологий.

1. Наиболее простой вид топологии - шина. В такой сети все компьютеры подключены к одному кабелю. Рабочие станции с помощью сетевых адаптеров подключаются к общей магистрали /шине/ (рис. 1).


Рис. 4 Схема соединения С н е ж и н к а

На шину похожа и структура, которая называется кольцо. Здесь компьютеры также соединяются друг с другом в виде замкнутого кольца (рис. 2).

2. Для локальных сетей, основанных на файловом сервере, может применяться схема звезда. Характеризуется наличием центрального узла коммутации – сетевого сервера, которому или через который посылаются все сообщения (рис.3).

От схемы зависит состав оборудования и программного обеспечения Топологию выбирают исходя из потребностей предприятия. Если предприятие занимает многоэтажное здание, то в нем оптимально может быть применена схема снежинка, в которой имеются файловые серверы для разных рабочих групп и один центральный сервер для всего предприятия (рис. 4).

3. Сетевые технические средства.

Базовые компоненты и технологии, связанные с архитектурой локальных или территориально-распределенных сетей, могут включать в себя:

Аппаратное обеспечение:

o Серверы

o Сетевые интерфейсные платы (NIC, Network Interface Card)

o Концентраторы

o Коммутаторы

o Маршрутизаторы (территориально-распределенные сети)

o Серверы удаленного доступа (территориально-распределенные сети)

o Модемы (территориально-распределенные сети).

Кабели. Данные по кабелю передаются в виде пакетов, пересылающихся с одного сетевого устройства на другое. Существует несколько типов кабелей, каждый из которых имеет свои преимущества.

Кабель типа "витая пара" (ТР, Twisted Pair) бывает двух видов: экранированная витая пара (STP, Shielded Twisted Pair) и неэкранированная витая пара (UTP, Unshielded Twisted Pair). Оба типа кабеля состоят из пары скрученных медных проводов.

Тонкий и толстый коаксиальный кабель

Это типы кабеля аналогичны стандартному телевизионному кабелю. Поскольку с такими кабелями труднее работать, в новых инсталляциях практически всегда применяется витая пара или оптоволоконный кабель.

Оптоволоконный кабель

Оптоволоконный кабель поддерживает скорость передачи данных (в виде пакетов) 10, 100 или 1000 Мбит/с. Данные передаются с помощью световых импульсов, проходящих по оптическому волокну. Хотя этот кабель гораздо дороже и сложнее в инсталляции, чем UTP, он часто применяется в центральных магистральных сетях, поскольку обеспечивает полную защиту от электрических помех и позволяет передавать информацию на очень большие расстояния. Кроме того, благодаря совершенствованию оптоволоконной технологии данный кабель становится все более приемлемым по цене.

Серверы

Сервер в сети клиент/сервер представляет собой ПК с жестким диском большой емкости, на котором можно хранить приложения и файлы, доступные для других ПК в сети. Сервер может также управлять доступом к периферийным устройствам (таким как принтеры) и используется для выполнения сетевой операционной системы (NOS, Network Operating System).

Сетевые интерфейсные платы

Сетевые интерфейсные платы (NIC, Network Interface Card) устанавливаются на настольных и портативных ПК. Они служат для взаимодействия с другими устройствами в локальной сети. Существует целый спектр сетевых плат для различных ПК, имеющих определенные требования требованиям к производительности. Характеризуются по скорости передачи данных и способах подключения к сети.

Концентраторы

В структурированной кабельной конфигурации все входящие в сеть ПК взаимодействуют с концентратором (или коммутатором).

Hab (хаб; концентратор) - устройство множественного доступа, выполняющее роль центральной точки соединения в топологии "физическая звезда". Наряду с традиционным названием "концентратор" в литературе встречается также термин "хаб".

Коммутатор

Коммутатор предоставляет каждому устройству (серверу, ПК или концентратору), подключенному к одному из его портов, всю полосу пропускания сети. Это повышает производительность и уменьшает время отклика сети за счет сокращения числа пользователей на сегмент.

Маршрутизаторы могут выполнять следующие простые функции:

Подключение локальных сетей (LAN) к территориально-распределенным сетям (WAN).

Соединение нескольких локальных сетей.

Маршрутизаторы зависят от используемого протокола (например, TCP/IP, IPX, AppleTalk) и, в отличие от мостов и коммутаторов, функционирующих на втором уровне, работают на третьем или седьмом уровне модели OSI. Производительность маршрутизатора в плане объема передаваемых данных в секунду обычно пропорциональна его стоимости. Поскольку маршрутизатор работает на основе протокола, он может принимать решение о наилучшем маршруте доставки данных, руководствуясь такими факторами, как стоимость, скорость доставки и т.д. Кроме того, маршрутизаторы позволяют эффективно управлять трафиком широковещательной рассылки, обеспечивая передачу данных только в нужные порты.

Модемы

Модемы позволяют пользователям ПК обмениваться информацией и подключаться к Internet по обычным телефонным линиям. Название "модем" обусловлена от функцией устройства и означает "модулятор/демодулятор". Модем модулирует цифровые сигналы, поступающие от ПК, в аналоговые сигналы, передаваемые по телефонной сети общего пользования, а другой модем демодулирует эти сигналы на приемном конце, снова преобразуя их в цифровую форму.

4. Сетевые программные средства.

Сетевое программное обеспечение состоит из трех частей:

· общего программного обеспечения;

· системного программного обеспечения;

· специального программного обеспечения

Особая роль в программном обеспечении отводится операционным системам.

Сетевая операционная система

Сетевая операционная система (NOS, Network Operating System) - это программное обеспечение, применяемое на каждом подключенном к сети ПК. Оно осуществляет управление и координирует доступ к сетевым ресурсам. Сетевая ОС отвечает за маршрутизацию сообщений в сети, разрешение конфликтов при конкуренции за сетевые устройства и работу с операционной системой ПК, например Windows 95, Windows NT, UNIX, Macintosh или OS/2.

Сетевая ОС обеспечивает совместную работу с файлами и приложениями. Такие ресурсы, находящиеся на одной рабочей станции, могут совместно использоваться, передаваться или изменяться с другой рабочей станции. Сетевая ОС выполняет роль регулировщика трафика, предоставляет сервис каталога, обеспечивает контроль полномочий в системе защиты и реализует функции управления сетью. В число популярных сетевых ОС входят Windows NT Server, Novell NetWare и Banyan VINES.

5. Сетевые технологии

Сетевая технология – это согласованный набор стандартных протоколов и реализующих их программно-аппаратных средств (например, сетевых адаптеров, драйверов, кабелей и разъемов), достаточный для построения вычислительной сети.

Ethernet. Ethernet - самая популярная технология построения локальных сетей. Другие базовые сетевые технологии – Token Ring, FDDI, - хотя и обладают многими индивидуальными чертами, в то же время имеют много общих черт.

Технологии с кольцевой архитектурой. Технологии Token Ring и FDDI используются для создания эстафетных сетей с маркерным доступом. Они образуют непрерывное кольцо, в котором в одном направлении циркулирует специальная последовательность битов, называемая маркером (token). Маркер передается по кольцу, минуя каждую рабочую станцию в сети. Рабочая станция, располагающая информацией, которую необходимо передать, может добавить к маркеру кадр данных. В противном случае (при отсутствии данных) она просто передает маркер следующей станции. Сети Token Ring функционируют со скоростью 4 или 16 Мбит/с и применяются главным образом в среде IBM.

Fast Ethernet

В сети Fast Ethernet применяется та же базовая технология, что и в Ethernet Сети Fast Ethernet позволяют передавать данные со скоростью 100 Мбит/с, то есть в десять раз быстрее Ethernet

Gigabit Ethernet

Сети Gigabit Ethernet совместимы с сетевой инфраструктурой Ethernet и Fast Ethernet, но функционируют со скоростью 1000 Мбит/с - в 10 раз быстрее Fast Ethernet.

6. Электронная почта.

Электронная почта (E-Mail). Эта служба также является одной из наиболее ранних. Ее обеспечением в Интернете занимаются специальные почтовые серверы. Обратите внимание на то, что когда мы говорим о каком-либо сервере, не имеется в виду, что это специальный выделенный компьютер. Здесь и далее под сервером может понимать­ся программное обеспечение. Таким образом, один узловой компьютер Интернета может выполнять функции нескольких серверов и обеспечивать работу различных служб, оставаясь при этом универсальным компьютером, на котором можно выпол­нять и другие задачи, характерные для средств вычислительной техники.

Почтовые серверы получают сообщения от клиентов и пересылают их по цепочке к почтовым серверам адресатов, где эти сообщения накапливаются. При установ­лении соединения между адресатом и его почтовым сервером происходит автоматическая передача поступивших сообщений на компьютер адресата.

Принципы работы электронной почты.

Система электронной почты состоит из трех компонентов:

Пользовательского агента - позволяет пользователям читать и составлять сообщения.

Транспортного агента - пересылает сообщения с одной машины на другую.

Доставочного агента - помещает сообщения в почтовые ящики пользователей-получателей.

Пользовательские агенты.

Программы, которые позволяют пользователям читать и составлять почтовые сообщения. Примерами этих агентов могут служить программа Internet Mail в Windows 95,команда mail в UNIX.

Транспортные агенты.

Программы, которые принимают почту от пользовательского агента, интерпретируют адреса пользователей и пере направляет почту на соответствующие компьютеры для последующей доставки. Кроме этого транспортный агент принимает входящую почту от других транспортных агентов.

Доставочные агенты.

Программы, которые принимают почту от транспортного агента и доставляют ее соответствующим пользователям. Почта может доставляться конкретному лицу, в список рассылки, в файл, в программу и т.п. Для обслуживания получателей каждого типа необходим отдельный агент mail - доставочный агент локальных пользователей.

Адресация в системе электронной почты

Есть два вида адресов электронной почты: маршрутно-зависимые и маршрутно-независимые. При использовании первого способа адресации требуется чтобы, отправитель знал промежуточные машины, через которые должно пройти сообщение, для того чтобы попасть в пункт назначения. В адресе второго вида просто указывается пункт назначения. UUCP-адреса являются маршрутно-зависимыми, а Internet-адреса (обычно) от маршрута не зависят.

Электронно-почтовый Internet-адрес имеет следующий формат пользователь@машина , где знак @ отделяет имя пользователя от обозначения машины. Почта доставляется в почтовый ящик пользователя на машине.

7. Сеть INTERNET

В настоящее время в мире насчитываются сотни тысяч больших и малых сетей. Большинство из них уже соединены. Так постепенно образовалось единое информационное поле, состоящее из миллионов взаимосвязанных компьютеров. Это единое информационное пространство я называют Интернетом. Самое простое определение звучит так: Интернет - это сеть сетей.

Физически структуру Интернета составляют компьютеры самых разных типов. Те из них, которые подключены постоянно и участвуют в передаче данных между другими участниками сети, называются серверами. Несмотря на то, что многие из серверов несовместимы программно, вся система функционирует надежно благодаря тому, что каждый сервер использует стандартный протокол передачи данных - TCP/IP.

Адреса Интернета

Протокол ТСР/ТР - это на самом деле не один протокол, а два. Первый - TCP отвечает за то, как информация разделяется на пакеты и как потом собирается в полный документ. Второй протокол - IP - отвечает за то, как эти пакеты передаются в сети и как они достигают адресата.

Все компьютеры, включенные во всемирную сеть, работают в автоматическом режиме, без участия людей. Промежуточные серверы, пересылающие пакеты, не могут и не должны знать, где находятся отправитель и получатель. Их задача простая - переслать пакет своему соседу, который находится к получателю ближе, чем они сами. Что такое «ближе» и что такое «дальше», сервер определяет по четырем байтам адреса, например 198.137.240.100. Такая форма записи адреса называется IP-адресом. Эта форма удобна для компьютеров, но неудобна для людей. Запоминать такие адреса трудно. Поэтому существует и другая, более удобная форма записи, использующая систему имен доменов (DNS).

Компьютерная сеть (Computer Network) – это множество компьютеров, соединенных линиями связи и работающих под управлением специального программного обеспечения.

Под линией связи обычно понимают совокупность технических устройств, и физической среды, обеспечивающих передачу сигналов от передатчика к приемнику. В реальной жизни примерами линий связи могут служить участки кабеля и усилители, обеспечивающие передачу сигналов между коммутаторами телефонной сети. На основе линий связи строятся каналы связи.

Каналом связи обычно называют систему технических устройств и линий связи, обеспечивающую передачу информации между абонентами. Соотношение между понятиями "канал" и "линия" описывается следующим образом: канал связи может включать в себя несколько разнородных линий связи, а одна линия связи может использоваться несколькими каналами

Линии и каналы связи

Главной целью объединения компьютеров в сеть является предоставление пользователям возможности доступа к различным информационным ресурсам (например, документам, программам, базам данных и т.д.), распределенным по этим компьютерам и их совместного использования.

Важной характеристикой любой компьютерной сети является широта территории, которую она охватывает. Широта охвата определятся взаимной удаленностью компьютеров, составляющих сеть и, следовательно, влияет на технологические решения, выбираемые при построении сети. Классически выделяют два типа сетей: локальные сети и глобальные сети.

Локальные сети

К локальным сетям (Local Area Network, LAN) обычно относят сети, компьютеры которых сосредоточены на относительно небольших территориях (как правило, в радиусе до 1-2 км). Классическим примером локальных сетей является сеть одного предприятия, расположенного в одном или нескольких стоящих рядом зданиях. Небольшой размер локальных сетей позволяет использовать для их построения достаточно дорогие и высококачественные технологии, что обеспечивает высокую скорость обмена информацией между компьютерами.

Локальная сеть

Глобальные сети

Глобальные сети (Wide Area Network, WAN) – это сети, предназначенные для объединения отдельных компьютеров и локальных сетей, расположенных на значительном удалении (сотни и тысячи километров) друг от друга. Поскольку организация специализированных высококачественных каналов связи большой протяженности является достаточно дорогой, то в глобальных сетях нередко используются уже существующие и изначально не предназначенные для построения компьютерных сетей линии (например, телефонные или телеграфные). В связи с этим скорость передачи данных в таких сетях существенно ниже, чем в локальных.

Глобальная сеть

Городские сети

Не так давно к двум указанным типам сетей добавился еще один – так называемые городские сети (Metropolitan Area Network, MAN). Такие сети предназначены для обеспечения взаимодействия компьютеров и/или локальных сетей, рассредоточенных на территории крупного города (как правило, в радиусе до 100 км), а также для подключения локальных сетей к глобальным. Для построения таких сетей используются достаточно качественные цифровые линии связи, позволяющие осуществлять взаимодействие на относительно высоких по сравнению с глобальными сетями скоростях.

Городская сеть

Интернет

Независимо от того, какую территорию покрывает сеть, какие технологические решения лежат в основе ее организации, существуют общие принципы сетевого взаимодействия, которым должно подчиняться функционирование сети. Именно выработка таких общих принципов способствовала в свое время появлению Интернет (Internet) как объединенной сети (иногда даже используется термин "гиперсеть"), собравшей в своем составе локальные, городские и глобальные сети всей планеты.

Интернет как объединенная сеть

В следующих разделах освещены современные концепции сетевого взаимодействия, а также их практические реализации, технически обеспечивающие функционирование сети Интернет.

Определение компьютерной сети. Виды компьютерных сетей.

Сети разновидность распределœенной ИС. Система, которая занимается сбором, хранением и обработкой информации. Виды распределœенных систем: Сеть -> кластер -> многопроцессорная система.

Кластер – система, в которой узлы физически изолированы друг от друга, но имеются специальные средства для их соединœения. Для передачи данных используют шины.

Узлы - определённые компьютеры.

Состав сети:

1)Компьютеры(хосты,hosts)-потребители генераторы информации;

2)Сетевое оборудование: а) концентраторы, б) мосты, в) коммутаторы,

г) повторители, д) маршрутизаторы, е) межсетевые экраны, ж) сетевые карточки,

з) сетевые кабели, и) модемы(ADSL, Wifi, Кабельные, dial-up устарели из-за низкой скорости).

Компьютерная сеть (Computer Network) - ϶ᴛᴏ множество компьютеров, соединœенных линиями связи и работающих под управлением специального программного обеспечения.

Сервер – компьютер или программа, которые представляют определённый сервис.

Клиент – прикладная программа, потребитель услуг или информации, передаваемой сервером.Главная цель объединœения компьютеров в сеть - предоставление пользователям возможности доступа к различным информационным ресурсам, распределœенным по этим компьютерам и их совместного использования.

Важной характеристикой любой компьютерной сети - широта территории , которую она охватывает. Широта охвата определятся взаимной удаленностью компьютеров, составляющих сеть и, следовательно, влияет на технологические решения, выбираемые при построении сети.

По широте охвата классически выделяют 2 типа сетей:

- Локальные LAM- сети, компьютеры которых сосредоточены на относительно небольших территориях (как правило, в радиусе до 1-2 км). Для их построения используют достаточно дорогие и высококачественные технологии, что обеспечивает высокую скорость обмена информацией между компьютерами.

- Глобальные WAM- это сети, предназначенные для объединœения отдельных компьютеров и локальных сетей, расположенных на значительном удалении (сотни и тысячи километров) друг от друга. В глобальных сетях нередко используются уже существующие и изначально не предназначенные для построения компьютерных сетей линии (к примеру, телœефонные или телœеграфные). В связи с этим скорость передачи данных в таких сетях существенно ниже, чем в локальных.

Еще выделяют:

- Городскиесети (MAN). Такие сети предназначены для обеспечения взаимодействия компьютеров и/или локальных сетей, рассредоточенных на территории крупного города (как правило, в радиусе до 100 км), а также для подключения локальных сетей к глобальным. Для построения таких сетей используются достаточно качественные цифровые линии связи, позволяющие осуществлять взаимодействие на относительно высоких по сравнению с глобальными сетями скоростях.

- Интернет – сеть собравшая в себя локальные, городские и глобальные сети всœей планеты.

По типу организованности:

- Локальная сеть - это сеть, в которой компьютеры располагаются компактно, либо в одном, либо в нескольких сосœедних помещениях.

- Одноранговая сеть - это сеть в которой нет выделœенных серверов, всœе компьютеры имеют равные права и одновременно являются как клиентами так и серверами.

- Гетерогенная сеть - это сеть к которой подключены компьютеры с различными операционными системами.

Определение компьютерной сети. Виды компьютерных сетей. - понятие и виды. Классификация и особенности категории "Определение компьютерной сети. Виды компьютерных сетей." 2017, 2018.

Компьютерная сеть - это практика взаимодействия двух или более вычислительных устройств друг с другом для совместного использования данных. Компьютерные сети построены с использованием комбинации аппаратного и программного обеспечения.

Классификация компьютерных сетей и локальные сети

Компьютерные сети можно разделить на несколько категорий.

Один подход определяет тип сети в соответствии с географической областью, в которой он распространяется. Например, локальные сети (ЛВС), как правило, охватывают один дом, школу или небольшое офисное здание, тогда как глобальные сети (WAN) охватывают города, штаты или даже по всему миру. Интернет является крупнейшей в мире глобальной сети WAN.

Сетевой дизайн

Компьютерные сети также отличаются своим дизайном. Две основные формы проектирования сети называются клиент / сервер и одноранговые. Сети клиент-сервер имеют централизованные серверные компьютеры, на которых хранятся электронная почта, веб-страницы, файлы и приложения, доступ к которым осуществляется клиентскими компьютерами и другими клиентскими устройствами.

В одноранговой сети, наоборот, все устройства имеют тенденцию поддерживать одни и те же функции. Сети клиент-сервер гораздо чаще встречаются в деловых и одноранговых сетях, более распространенных в домах.

Топология сети определяет ее компоновку или структуру с точки зрения потока данных.

Например, в так называемых шинных сетях все компьютеры совместно используют и обмениваются данными по одному общему каналу, тогда как в звездной сети все данные проходят через одно централизованное устройство. Обычные типы сетевых топологий включают шины, звезду, кольцевые сети и сетчатые сети.

Сетевые протоколы

Языки общения, используемые компьютерными устройствами, называются сетевыми протоколами.

Еще один способ классификации компьютерных сетей - это набор протоколов, которые они поддерживают. Сети часто реализуют несколько протоколов с каждым поддерживающим конкретные приложения. Популярные протоколы включают TCP / IP - наиболее часто встречающиеся в Интернете и в домашних сетях.

Компьютерная сетевая аппаратура и программное обеспечение

Специальные устройства связи, включая сетевые маршрутизаторы, точки доступа и сетевые кабели, физически склеивают сеть вместе. Сетевые операционные системы и другие программные приложения генерируют сетевой трафик и позволяют пользователям делать полезные вещи.

Домашние компьютерные сети

В то время как другие типы сетей строятся и поддерживаются инженерами, домашние сети принадлежат обычным домовладельцам, люди часто имеют небольшой или вообще не имеют технического фона. Различные производители производят оборудование широкополосного маршрутизатора, предназначенное для упрощения настройки домашней сети.

Домашний маршрутизатор позволяет устройствам в разных помещениях эффективно обмениваться широкополосным подключением к Интернету, помогает людям более легко делиться своими файлами и принтерами в сети и улучшает общую сетевую безопасность.

Домашние сети увеличили возможности с каждым поколением новых технологий.

Системы домашней автоматизации также существуют уже много лет, но в последнее время они также стали популярными с практическими системами управления освещением, цифровыми термостатами и приборами.

Компьютерные сети для бизнеса

В средах малого и домашнего офиса (SOHO) используются аналогичные технологии, которые можно найти в домашних сетях. Компании часто имеют дополнительную связь, хранение данных и требования безопасности, которые требуют расширения своих сетей по-разному, особенно по мере роста бизнеса.

В то время как домашняя сеть обычно функционирует как одна локальная сеть, бизнес-сеть имеет тенденцию содержать несколько локальных сетей. Компании со зданиями в нескольких местах используют широкополосные сети для объединения этих филиалов.

Хотя они также доступны и используются некоторыми домохозяйствами, технологии передачи голоса по IP, а также технологии хранения и резервного копирования в сети широко распространены в бизнесе. Более крупные компании также поддерживают собственные внутренние веб-сайты, называемые интрасетями, чтобы помочь с деловым сообществом сотрудников.

Сеть и Интернет

Популярность компьютерных сетей резко возросла благодаря созданию World Wide Web (WWW) в 1990-х годах. Публичные веб-сайты, системы обмена файлами с одноранговой связью (P2P) и различные другие службы, запущенные на интернет-серверах по всему миру.

Проводная и беспроводная компьютерная сеть

Многие из тех же протоколов, как TCP / IP, работают как в проводных, так и в беспроводных сетях. Сети с кабелями Ethernet преобладали в бизнесе, школах и домах в течение нескольких десятилетий. Однако в последнее время беспроводные технологии, такие как Wi-Fi, стали предпочтительным вариантом для создания новых компьютерных сетей, частично для поддержки смартфонов и других новых видов беспроводных гаджетов, которые вызвали рост мобильных сетей.

Статьи по теме: