Частота магнетрона микроволновой печи. Магнетроны. Как устроена микроволновка

Магнетроны называются электронные приборы, в которых образуются колебания сверхвысокой частоты при помощи модуляции потока электронов. Магнитные и электрические поля в нем действуют с большой силой. Наиболее распространенная модификация магнетрона – это многорезонаторный.

Впервые магнетрон был создан в Америке в 1921 году. С течением времени эксперименты с ним продолжались. В результате появилось множество видов магнетронов, использующихся в радиоэлектронике. В 1960 году приборы стали использоваться в печах сверхвысокой частоты для домашнего применения. Менее распространены клистроны, платинотроны, которые основаны на этом же принципе действия.

Устройство и принцип работы

1 — Анод
2 — Катод
3 — Накал
4 — Резонансная полость
5 — Антенна

Магнетроны резонансного типа состоят из:

  • Анодный блок . Представляет собой толстостенный металлический цилиндр с полостями в стенках. Эти полости являются объемными резонаторами, которые создают колебательную кольцевую систему.
  • Катод . Он имеет цилиндрическую форму. Внутри него размещен подогреватель.
  • Внешние электромагниты или постоянные магниты . Они создают магнитное поле, которое параллельно оси прибора.
  • Проволочная петля . Она применяется для вывода сверхвысоких частот, и закреплена в резонаторе.

Резонаторы создают кольцевую систему колебаний. Возле них пучки электронов воздействуют на электромагнитные волны. Так как эта система выполнена замкнутой, то она способна возбудиться только на определенных частотах колебаний. При нахождении рядом с рабочей частотой других частот, случается перескакивание частоты и нарушается стабильность работы устройства.

Чтобы исключить такие отрицательные эффекты магнетроны с одинаковыми резонаторами оснащаются разными связками, либо используются магнетроны с отличающимися размерами резонаторов.

Магнетроны разделяют по виду резонаторов:

  • Лопаточные.
  • Щель-отверстие.
  • Щелевые.

В магнетронах применяется движение электронов в перпендикулярных магнитных и электрических полях, созданных в зазоре кольца между анодом и катодом. Между ними подается напряжение (анодное), которое образует радиальное электрическое поле. Под воздействием этого поля электроны вырываются из нагретого катода и устремляются к аноду.

Анодный блок находится между полюсов магнита, образующего магнитное поле, которое направлено вдоль оси магнетрона. Магнитное поле действует на электрон и отклоняет его на спиральную траекторию. В промежутке между анодом и катодом создается вращательное облако, похожее на колесо со спицами. Электроны возбуждают в объемных резонаторах колебания высокой частоты.

Отдельно каждый резонатор является колебательной системой. Магнитное поле концентрируется внутри полости, а электрическое поле сосредоточено у щелей. Энергия выводится из магнетрона с помощью индуктивной петли. Она размещена в соседних резонаторах. Электроэнергия подключается к нагрузке коаксиальным кабелем.

Нагревание токами высокой частоты производится в волноводах различного сечения, либо в объемных резонаторах. Также нагревание может производиться электромагнитными волнами.

Приборы работают от выпрямленного тока по простой схеме выпрямления. Устройства небольшой мощности способны работать от переменного тока. Рабочая частота тока магнетронов может достигать 100 ГГц, мощностью до нескольких десятков киловатт в постоянном режиме, и до 5 мегаватт в режиме импульсов.

Устройство магнетрона довольно простое. Его стоимость невысока. Поэтому такие качества в сочетании с повышенной эффективностью нагревания и разнообразным использованием высокочастотных токов открывают большие возможности использования в разных сферах жизни.

Основные виды магнетронов

  • Многорезонаторные устройства . Они содержат анодные блоки с несколькими резонаторами. Блоки состоят из различного вида резонаторов. В диапазоне 10 см длины волны магнетрон обладает КПД 30%. Выход излучения высокой частоты осуществляется сбоку в щель резонатора.
  • Обращенные устройства . Они бывают двух исполнений: коаксиальные и обычные. Такие магнетроны способны выдать импульсы высокой частоты 700 наносекунд с энергией 250 джоулей. Коаксиальный вид магнетрона содержит стабилизирующий резонатор. В нем имеются отверстия во внешней стенке, а также ферритовые стержни с подмагничивающими катушками.

Сфера использования магнетронов

  • В устройствах радаров антенна подключена к волноводу. Она, по сути, является щелевым волноводом, или рупорным коническим облучателем вместе с отражателем в виде параболы (тарелка). Управление магнетрона осуществляется с помощью коротких мощных импульсов напряжения. В итоге образуется короткий импульс энергии с малой длиной волны. Малая часть такой энергии поступает снова на антенну и волновод, и далее к чувствительному приемнику. Сигнал обрабатывается и поступает на электронно-лучевую трубку на экран радара.
  • В бытовых микроволновых печах волновод имеет отверстие, которое не создает препятствие радиочастотным волнам в рабочей камере. Важным условием работы микроволновки является условие, чтобы при работе печи в камере находились какие-либо продукты. При этом микроволны поглощаются продуктами, и не возвращаются на волновод. Стоячие волны в микроволновой печи могут искрить. При долгом искрении магнетрон может выйти из строя. Если в микроволновке мало продуктов для приготовления, то лучше дополнительно поместить в камеру стакан с водой для лучшего поглощения волн.

1 — Магнетрон
2 — Высоковольтный конденсатор
3 — Высоковольтный диод
4 — Защита
5 — Высоковольтный трансформатор

  • В радиолокационных станциях используются коаксиальные магнетроны с быстрым изменением частоты. Это позволяет расширить тактико-технические свойства локаторов.

Выбор и приобретение магнетрона

Чтобы самому приобрести магнетрон для , необходимо изучить и разобраться в маркировке, выяснить, какие бывают их виды, и их параметры.

Наиболее малую мощность имеет магнетрон 2М 213. Его мощность составляет 700 ватт при нагрузке и 600 ватт номинальная.

Приборы средней мощности в основном изготавливают на 1000 ватт. Марка такого магнетрона – 2М 214.

Наибольшая мощность магнетрона у модели 2М 246.

Показатель мощности у них равен 1150 ватт. Перед приобретением необходимо сопоставить цену магнетрона со стоимостью всей печи, и не забыть о стоимости работ по ремонту. Возможно, что не будет смысла в ремонте.

Можно ли магнетрон заменить самостоятельно?

Для разных моделей микроволновок можно устанавливать магнетрон других фирм изготовления. Главное, чтобы он подходил по мощности, в настоящее время не проблема приобрести его в торговой сети. Исключение составляют модели, которые уже сняты с производства.

Однако, даже если вы разобрались в устройстве микроволновки, то не рекомендуется заниматься заменой деталей в домашних условиях, так как этим должны заниматься квалифицированные специалисты, способные обеспечить безопасную работу устройства. К тому же, сделать это самостоятельно будет довольно проблематично.

Работа микроволновки

Пища имеет в составе воду, которая состоит из заряженных частиц. Продукты в микроволновой печи разогреваются посредством воздействия на них волн высокой частоты. Молекулы воды выступают в качестве диполя, так как проводят волны электрического поля.

Магнетроны применяются для получения колебаний высокой частоты. Они незаменимы в электронике и радиотехнике; устанавливаются в радиолокационных стациях, для высокочастотного нагрева, для ускорения заряженных частиц. В основе действия магнетрона лежит взаимодействие сильных электрических и магнитных полей, результатом чего является генерация колебаний высоких частот. Наиболее популярных видом магнетрона является многорезонаторный магнетрон.

Конструкция многорезонаторного магнетрона

Его основой является анодный блок, который представляет собой толстостенный полый медный цилиндр, в стенках которого вырезаны полости, соединённые с центральным пространством щелями. Эти полости представляют собой кольцевую систему объёмных резонаторов.

В центре анодного блока высверлено широкое круглое отверстие, через которое подключается источник питания посредством специальных выводов к катоду (подогреваемая нить накала), который проходит вдоль центральной оси анода. Вывод высокочастотных колебаний устанавливается в одном из резонаторов. Торцы цилиндра герметично закрыты медными крышками, а внутри обеспечивается вакуум высокой степени. Эффективное охлаждение блока обеспечивается ребристыми радиаторами, расположенными на его поверхности.

Принцип действия магнетрона

Весь анодный блок устанавливается в сильное магнитное поле, которое создаётся постоянными магнитами. Между катодом и анодом устанавливается высокое электрическое напряжение, при этом положительный полюс прикладывается к аноду. Электроны, которые вылетают из катода под действием электрического поля, двигаются в радиальном направлении к аноду, однако под влиянием магнитного поля меняют траекторию движения.

При определённых величинах магнитного и электрического полей удаётся добиться такого состояния, когда электроны, описывая окружность, в итоге пройдя рядом с анодом, вновь возвращаются на катод, а на анод попадает только незначительная часть вылетевших электронов. Большая часть их возвращается обратно в область катода.

При некоторых условиях динамического равновесия, возвращающиеся в область катода электроны заменяются вылетевшими вновь. Поскольку электроны постоянно перемещаются от катода к аноду, возле последнего рядом со щелями объёмных резонаторов устанавливается постоянно вращающийся заряд кольцеобразной формы. По мере движения по окружности центральной полости анодного блока электроны возбуждают в каждом резонаторе незатухающие высокочастотные колебания.

Выводятся эти колебания посредством витка проводов, расположенного в полости одного из резонаторов, которые затем передаются в коаксиальную линию или волновод.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ РОССИЙСКОЙ ФЕДЕРАЦИИ

РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра ЭП

Учебно-исследовательская работа

Магнетроны и гиротроны

Выполнила:

Чунихина А.Д.

Рязань 2010

1. Основные виды

1.1 Магнетроны

1.2 Гиротроны

2. Основные характеристики

2.1 Магнетроны

2.2 Гиротроны

3. Принцип работы

3.1 Магнетроны

3.2 Гиротроны

1. Основные виды

1.1 Магнетроны

Магнетро́н (от греч. μαγνήτης - магнит и электрон) - электровакуумный прибор для генерации радиоволн сверхвысокой частоты (СВЧ, микроволн), в котором взаимодействие электронов с электрической составляющей поля СВЧ происходит в пространстве, где постоянное магнитное поле перпендикулярно постоянному электрическому полю. Наиболее известным применением магнетронов являются радары и бытовые микроволновые печи.

Различные типы магнетронов: в области напряжений 0,4…1,0 МВ и токов от 2 до 30 кА при длительности импульса от 50 до 1000 нс.

А) Магнетроны с многорезонаторными анодными блоками, состоящие из одинаковых резонаторов, разных резонаторов лопаточного типа и типа щель-отверстие. В 10см диапазоне длин волн эти магнетроны имеют КПД 20…30 % при гигаваттном уровне мощности в импульсах длительностью 30…100 нс и полосе генерируемых частот 2%. Вывод СВЧ излучения производится в бок через щель связи в одном из резонаторов.

Б) Обращенный и коаксиальный обращенный магнетроны – дают СВЧ импульсы длительностью 500…700 нс с энергией до 250 Дж.

Определение . Многорезонаторными магнетронами называют электронные приборы, в которых образование электронного потока и его взаимодействие с переменными электрическими полями ряда колебательных контуров-резонаторов происходит в стационарных скрещенных электрическом и магнитном полях. Магнетроны служат генераторами незатухающих колебаний в диапазоне от миллиметровых до метровых волн.

Устройство . Анодный блок многорезонаторного магнетрона (рис. 5-1) представляет собой невысокий медный цилиндр с рядом отверстий, параллельных оси цилиндра. Вместе со щелями, соединяющими эти отверстия с центральным, они образуют объемные резонаторы. Таким образом, анодный блок представляет собой систему связанных контуров. Часть анодного блока, заключенная между двумя соседними щелями, называется сегментом. В центральном отверстии расположен катод в виде цилиндра, боковая поверхность которого покрыта оксидным слоем. Пространство между катодом и анодным блоком называется пространством взаимодействия. Здесь поток электронов, движущихся от катода к аноду, взаимодействует с переменными электрическими полями, сконцентрированными вблизи щелей колебательных систем. В одном из резонаторов имеется петля связи, с помощью которой энергия высокочастотных колебаний отводится из магнетрона. Как правило, анодный блок магнетрона заземляется а катоду сообщается достаточно высокий отрицательный потенциал.

Магнетрон помещается в постоянное магнитное поле, образуемое постоянным магнитом, полюсы которого находятся вблизи торцовых поверхностей анодного блока. Поэтому движение электронов в пространстве взаимодействия подобно движению электронов в системе цилиндрических электродов, помещенной в осевое магнитное поле (рис. 4-5). Однако траектории электронов в магнетроне более сложные, так как, помимо постоянных электрического и магнитного полей, в пространстве взаимодействия имеется переменное электрическое поле, влияющее на движение электронов.

Принцип действия . Механизм возникновения незатухающих колебаний в магнетроне такой же, как и в любом автогенераторе. Начальные колебания в резонаторах магнетрона возникают в результате флуктуации электронного потока. Частота этих колебаний в общем случае несколько отличается от собственной резонансной частоты колебательных систем, так как анодный блок магнетрона образует систему сложно связанных контуров. Колебания поддерживаются за счет энергии источника постоянного напряжения анод - катод, которая с помощью электронного потока, ускоряемого постоянным электрическим полем и взаимодействующего с переменным электрическим полем вблизи щелей резонаторов, передается полю волны. Такую направленную передачу энергии можно осуществить, как известно, если электронный поток взаимодействует с переменным электрическим полем определенной фазы. Для этого электронный поток должен быть сгруппирован в сгустки, время прохождения которых вблизи щели резонатора совпадало бы со временем существования там поля в нужной фазе.

Движение электронов от катода к аноду в магнетроне происходит не во всех азимутальных направлениях равномерно. Потоки электронов к аноду создаются лишь в некоторых областях пространства взаимодействия, образуя так называемые электронные спицы (рис. 5-2, а). Число спиц зависит от характера высокочастотных колебаний и в наиболее употребительном режиме работы магнетрона равно половине числа резонаторов. Электроны в спицах перемещаются к аноду по сложным петлеобразным траекториям, так как характер их движения определяется суммарным воздействием постоянного и переменного электрических полей и постоянного магнитного поля.

Спицы образуются вблизи участков катода, лежащих против тех сегментов анода, которые в данный момент оказываются благодаря наложению переменного электрического поля заряженными до более положительного потенциала (рис. 5-2, б). Так как с изменением фазы колебаний меняются знаки заряда на сегментах анода, то изменяются и участки катода, вблизи которых формируются спицы. Спицы как бы вращаются в пространстве взаимодействия со скоростью, зависящей от частоты колебаний и фазовых соотношений для полей двух соседних резонаторов.

Скорость вращения спиц такова, что моменты прохождения электронов вблизи щелей резонаторов всегда совпадают с моментами существования там нужной фазы поля. Иначе говоря, вращение спиц синхронизируется с изменением фазы высокочастотных колебаний.

При сложном движении в спице от катода к аноду электроны на каждом витке теряют часть своей потенциальной энергии, которая и передается полю.

Электроны, отдавшие свою энергию полю, непрерывно уходят на анод, а спицы пополняются новыми электронами, эмиттированными катодом. Таков в общих чертах принцип работы многорезонаторного магнетрона.

5-2. Виды колебаний в магнетроне

Возможные виды колебаний. Как видно из рис. 5-1, анодный блок магнетрона представляет собой цепочку из N объемных резонаторов, свернутую в кольцо. Вообще говоря, в такой системе связанных резонаторов может возникнуть N различных видов колебаний. Однако в замкнутой системе из N резонаторов существуют только те колебания, для которых суммарная разность фаз при обходе по окружности анодного блока равна:

Ф = 2πn, (5-1)

где n = 0, 1, 2, ..., N определяет число целых периодов высокочастотного колебания, укладывающихся вдоль окружности анодного блока.

Иначе говоря, если волна в некоторой точке анодного блока характеризовалась фазой ψ, то при распространении вдоль цепочки резонаторов она должна возвратиться в эту точку с той же фазой. В противном случае в результате интерференции волна уничтожится.

Разность фаз колебаний в соседних резонаторах, следовательно, должна быть равна:


Из формулы (5-2) легко видеть, что при целочисленных значениях n, больших N, возможные величины фазовых сдвигов будут повторять величины φ для 0

Основным видом колебаний в многорезонаторном магнетроне являются π-колебания или противофазные колебания, соответствующие n = N/2 и φ = π. Этот вид колебаний не имеет дублета и, как будет показано, возникает при меньших, по сравнению с другими видами, анодных напряжениях и магнитных полях.

Колебания π-вида, как это видно из (5-2), могут возникнуть в магнетроне лишь при четном числе N. Поэтому анодные блоки многорезонаторных магнетронов обязательно содержат четное число резонаторов.

Поля в магнетроне . На рис. 5-3 показаны картины переменных электрического и магнитного полей в магнетроне при разных значениях n. Для наглядности анодный блок магнетрона изображен в развернутом виде (рис. 5-3, а). Ниже на развертках анодного блока пунктиром показаны силовые линии переменного магнитного поля для момента времени, соответствующего максимуму тока в контуре. Под развертками блока изображены кривые распределения высокочастотного потенциала вдоль поверхности анода. Силовые линии переменного электрического поля, когда ток в контуре равен нулю, показаны слева.

5-3. Взаимодействие электронов с переменным электрическим полем

Образование электронных спиц . Образование переменного по плотности электронного потока - электронных спиц - в многорезонаторном магнетроне осуществляется, как и во всех приборах типа М, за счет взаимодействия электронов с переменным неоднородным электрическим полем. Физические процессы, лежащие в основе такого взаимодействия, рассмотренные в гл. 4, справедливы и для многорезонаторного магнетрона.

В отсутствие колебаний в магнетроне электрон, покинувший катод с нулевой скоростью, движется по эпициклоидальной траектории (рис. 5-4, а). При возникновении колебаний вблизи щелей резонаторов образуются неоднородные электрические поля.


Рис. 5-4. Картины неоднородного электрического поля и траектории электронов. а - в отсутствие колебаний; б - траектория нерабочего электрона; в - траектория "рабочего" электрона

В отличие от рассмотренного в гл. 4 случая плоских электродов, движение электронов в магнетроне следует рассматривать с учетом его взаимодействия с радиальной и тангенциальной составляющими переменного электрического поля. Однако общая картина от этого не меняется. Воздействие радиальной составляющей поля аналогично влиянию поперечной составляющей в случае плоских электродов, а тангенциальная составляющая поля действует так же, как продольная. На рис. 5-4, б и в показаны картины неоднородного электрического поля, составляющие векторов напряженностей в различных точках поля и характер движения электронов для двух различных моментов времени, разделенных интервалом, равным половине периода колебаний.

В первом случае электрон, вылетевший с поверхности катода, описывая дугу эпициклоиды, оказывается в поле резонатора в тот момент, когда вектор тангенциальной составляющей поля противоположен по направлению вектору скорости электрона в верхней части витка. Суммарное электрическое поле в точке 5 характеризуется вектором ε σ 5 , отклоненным от радиального направления влево. В результате поверхность качения образующей окружности искривляется и электрон, описав виток, оказывается у поверхности катода с некоторым запасом энергии, которую он и рассеивает в виде тепла при соударении с катодом. Таким образом, большинство электронов, вылетающих с катода против резонаторов, поле которых характеризуется рассмотренной фазой, удаляются на катод. Исключение могут составить лишь те электроны, начальная скорость которых позволит им остаться в пространстве взаимодействия. Взаимодействие этих электронов с радиальной составляющей приводит к уменьшению плотности электронного потока в этой области поля. В самом деле, скорость электрона в точке 4 уменьшается, а в точке 6 - увеличивается относительно скорости центрального электрона, находящегося в точке 5 (см. § 4-2). Происходит разгруппирование электронов.

Иной характер имеет движение электронов, попадающих в противоположную фазу поля (рис. 5-4, в). Под действием радиальной составляющей электрон в точке 1 приобретает дополнительную скорость в тангенциальном направлении, а скорость электрона в точке 3 уменьшается. Электроны группируются в сгусток вокруг электрона, находящегося в точке 2. Происходит фазовая фокусировка электронного потока.

В результате сложения вектора тангенциальной составляющей неоднородного поля ε τ 2 и вектора ε постоянного электрического поля суммарный вектор ε σ 2 отклоняется вправо. Поверхность качения образующей окружности поднимается над поверхностью катода. Траекторию движения электрона можно приближенно представить как траекторию точки окружности, катящейся по некоторой криволинейной поверхности, уходящей от катода к аноду. Число "петель" в траектории и "крутизна" образующей поверхности зависят от величины анодного напряжения, магнитной индукции, а также от интенсивности переменного электрического поля.

Итак, на анод, описывая петлеобразные траектории, устремляются лишь электроны, покидающие те участки катода, против которых в данный момент времени существует тормозящее электроны переменное электрическое поле: в магнетроне образуются электронные спицы. Число таких спиц при противофазном виде колебаний равно половине числа резонаторов (см. рис. 5-2, а).

Движение электронных спиц . Поскольку через каждые полпериода знаки высокочастотных потенциалов на сегментах меняются на обратные (неоднородное поле как бы вращается вокруг оси прибора), перемещаются вслед за полем и электронные спицы. Для обеспечения нужной угловой скорости вращения спиц требуется, как мы увидим далее, определенная величина разности потенциалов между анодом и катодом. Такое синхронное с перемещением поля вращение электронных спиц обеспечивает не только непрерывное уплотнение электронов в спицах - их фазовую фокусировку, но и необходимый режим обмена энергией между электронами и сверхвысокочастотным полем.

Передача энергии от электронов полю . Электроны, образующие спицу одновременно с вращательным движением, описывая витки эпициклоиды, поднимаются от катода и постепенно уходят на анод. По мере вращения спица пополняется электронами с новых участков катода. Таким образом, электроны в спицах непрерывно перемещаются в радиальном направлении от катода к аноду. Эта составляющая движения электронов сопровождается уменьшением их потенциальной энергии.

Энергия электронов передается электромагнитному полю, взаимодействие с электрической составляющей которого и служит причиной рассмотренного движения электронов.

Для обеспечения радиального перемещения электронов, как и для вращательного движения спиц, требуются определенные величины разности потенциалов анод - катод и напряженности магнитного поля.

5-4. Рабочий режим магнетрона

В предыдущих параграфах отмечалось, что для обеспечения движения рабочих электронов по петлеобразным траекториям, их перемещения в радиальном направлении и получения нужной угловой скорости вращения спиц требуются определенные соотношения между напряженностью ε постоянного электрического поля и магнитной индукцией В. Выбор соответствующих величин ε и В и определяет рабочий режим магнетрона.

Парабола критического режима . Если анодное напряжение магнетрона больше критического, то условия передачи электронами энергии высокочастотному полю не выполняются. В самом деле, при U а > U а.кр электроны, двигаясь по криволинейным траекториям (см. рис. 4-7), устремляются к аноду. При этом высокочастотные колебания, даже если они и возникли, не могут поддерживаться за счет энергии электронов, которые не описывают петель и практически не взаимодействуют с переменным электрическим полем вблизи щелей резонаторов. Поэтому рабочие значения анодных напряжений должны лежать ниже параболы критического режима (рис. 4-6), которая описывается уравнением (4-38).

Потенциал синхронизации . Однако для нормальной работы магнетрона недостаточно движения электронов по петлеобразным траекториям. Необходимо, кроме того, добиться вращения спиц с определенной угловой частотой, синхронной с изменением фазы сверхвысокочастотных колебаний. Условие синхронизма может выполняться при различных значениях угловой скорости вращения спиц. В самом деле, при колебаниях вида π время t c движения спицы между двумя соседними резонаторами может равняться не только половине периода, но и любому целому числу полупериодов:


где p = 0, 1, 2, 3 ...

Графики движения электронов для колебаний π-вида при различных значениях р изображены пунктирными прямыми на рис. 5-5.


Рис. 5-5. Картина переменного электрического поля и графики движения электронов при колебаниях π-вида

На графике по оси ординат отложено время и под резверткой анодного блока изображены кривые распределения высокочастотного потенциала через каждые четверть периода. В течение всего времени узлы напряжения остаются в середине щелей. Во всех случаях, когда р - целое число, электроны оказываются в тормозящем поле вблизи каждого резонатора. В зависимости от р изменяется лишь угловая скорость ω 0 вращения электронов. Максимальная величина ω 0 соответствует p = 0, когда t c = T/2.

Для характеристики угловой скорости вращения электронов удобно ввести некоторый параметр k, равный числу периодов, в течение которых электрон проходит мимо всех резонаторов и возвращается к исходной точке. Тогда время движения электрона между соседними резонаторами, выраженное в долях периода Т, определится соотношением


В случае π-колебаний выражение (5-3) принимает вид:


Обобщая это соотношение и для других видов колебаний, получим:


Используя параметр k, нетрудно получить выражение угловой скорости вращения электронов для колебаний любого вида:


где λ = сТ - длина волны колебаний в магнетроне, а c - скорость света.

Для обеспечения угловой скорости вращения необходимо, чтобы электрон, находящийся в спице у поверхности анода, обладал тангенциальной скоростью


Кинетическую энергию в магнетроне электрон приобретает за счет постоянного электрического поля, определяемого разностью потенциалов U а. У поверхности анода (r = r а) наибольшее значение энергии электрона равно:

E K = eU a . (5-9)

В условиях синхронного движения энергия электрона у поверхности анода должна быть:


Приравнивая (5-9) и (5-10), получим значение анодного напряжения, необходимого для обеспечения синхронного вращения электронов:


Эта величина, называемая потенциалом синхронизации, определяет наименьшее (для заданного k) значение анодного напряжения, при котором возможно синхронное вращение электронных спиц.

Подставляя в (5-11) численные значения всех постоянных и выражая U c в вольтах, получим:


Это выражение получено в предположении, что электрон движется по окружности, соосной поверхности анода, и с радиусом, близким к величине r а. В действительности электроны движутся в магнетроне по сложным петлеобразным траекториям и тангенциальная составляющая их скорости зависит как от скорости переносного движения центра образующей окружности, так и от скорости движения самого электрона относительно этого центра.

Пороговое напряжение . Приблизившись к поверхности анода и передав полю значительную часть своей энергии, электрон должен быть удален из пространства взаимодействия. В противном случае такой отработавший, медленно движущийся электрон отстанет от спицы и отберет энергию у переменного поля. Для того чтобы отработавшие электроны попадали на анод, а также для обеспечения необходимой тангенциальной скорости электронов с учетом их движения по петлеобразным кривым требуется анодное напряжение несколько выше потенциала синхронизации U c .

На электрон, удаленный от центра магнетрона на расстояние r и вращающийся вокруг оси прибора с угловой скоростью ω 0 , действуют три силы (рис. 5-6): сила F e постоянного электрического поля направлена по радиусу к аноду; сила Лоренца F м, возникающая при пересечении электроном силовых линий магнитного поля, в соответствии с правилом правой руки, направлена к катоду; и, наконец, третья, центробежная сила F д, совпадает по направлению с силой F e .

Для того чтобы электрон достиг анода, кинетическая энергия его движения в радиальном направлении должна быть больше нуля и, следовательно, работа сил F e и F д должна быть больше или, по крайней мере, равна работе силы F м.

Из этих соображений легко определить [Л. 2] пороговое напряжение, т. е. величину наименьшего анодного напряжения, при котором отработавшие электроны удаляются на анод:

Подставляя сюда формулу (5-7) для ω 0 и выражая напряжение в вольтах, получим:

Отсюда видно, что для удовлетворения поставленных условий удаления отработавших электронов на анод анодное напряжение должно быть больше потенциала синхронизации, причем если величина U c не зависит от напряженности магнитного поля, то пороговое напряжение растет пропорционально величине В.

Диаграмма рабочего режима . Итак, мы рассмотрели ряд условий нормальной работы магнетрона и получили уравнения: для критического потенциала (4-38), для потенциала синхронизации (5-12) и для порогового анодного напряжения (5-14).

Все три эти зависимости изображены на рис. 5-7. Парабола критического режима отделяет на плоскости В - U a нерабочую область (заштрихована). При значениях В и U а для любой точки в этой области электроны в магнетроне не описывают петлеобразных траекторий и колебания отсутствуют. Величина потенциала синхронизации (5-12) не зависит от В, но изменяется в зависимости от к. На рис. 5-7 линия U c проведена лишь для режима π-колебаний (n = 4; р = 0; N = 8). Для других k = n (p = 0) потенциал синхронизации отмечен точками на параболе критического режима.

Линия порогового напряжения (5-14) при различных k(p = 0) изображаются на плоскости В - U а в виде прямых, касательных к параболе критического режима в точках, соответствующих значению потенциала синхронизации для данного вида колебаний. В справедливости этого нетрудно убедиться, если в выражение (5-14) подставить значение критического потенциала (4-38).

Таким образом, для колебаний π-вида нерабочей областью является также часть плоскости, лежащая ниже прямой порогового напряжения (k = 4). При этих значениях U a и В либо не выполняется условие синхронного движения спиц (U а

5-5. Анодный блок магнетрона

Эквивалентная схема анодного блока . Наиболее употребительные формы резонаторов магнетронов показаны на рис. 5-8, где, помимо уже известных нам, изображены также резонаторы, образованные короткозамкнутыми отрезками волноводов. Однако при любой конфигурации резонаторов анодный блок представляет собой систему сложно связанных контуров. Контуры магнетрона прежде всего связаны между собой кондуктивно, так как по поверхности сегмента анодного блока протекают токи соседних резонаторов. Помимо этого, между соседними резонаторами существует также емкостная связь через емкости, образованные сегментами анодного блока и поверхностью катода. И, наконец, соседние резонаторы связаны между собой индуктивно (силовые линии переменного магнитного поля в резонаторе замыкаются через соседние отверстия).

Преобладание того или иного вида связи определяется конструкцией анодного блока и, в частности, его высотой h. При малой величине h преобладает индуктивная связь между отдельными резонаторами, а с увеличением высоты h анодного блока все большую роль играет связь емкостная. Одна из возможных, эквивалентных схем анодного блока магнетрона с большим h представлена на рис. 5-9. Величины L 0 и С 0 - эквивалентные индуктивность и емкость резонатора соответственно. Резонаторы связаны между собой кондуктивно, а также через емкости С а-к анод - катод.

Анализ такой эквивалентной схемы показывает [Л. 2], что длина волны генерируемых колебаний зависит как от реактивных параметров, так и от числа n:


Отношение С а-к /С 0 в магнетронах обычно равно 0,1-0,4.

Зависимость (5-15) для восьмирезонаторного магнетрона показана на рис. 5-10 (кривая 1). Там же нанесена аналогичная зависимость (кривая 2), но для случая преобладания индуктивной связи в магнетроне. Из кривых видно, что колебания вида я незначительно отличаются по длине волны от колебаний соседних видов. С увеличением числа резонаторов, а следовательно, и числа n это отличие становится все меньше. Кроме того, вследствие малого отличия частоты π-колебаний от колебаний соседних видов работа магнетронного генератора может быть неустойчивой.

В результате изменения режима питания, характера нагрузки и других причин в магнетроне могут вместо π-колебаний возникнуть колебания другого вида (скачок частоты). Возможно также одновременное существование колебаний вида π и соседнего вида колебаний. Распределение высокочастотного поля при этом нарушается, условие синхронизма выполняется плохо, падают мощность и к. п. д. магнетрона. Следовательно, нельзя увеличивать число резонаторов с целью повышения мощности колебаний, что особенно важно на более коротких волнах.

Разделение видов колебаний с помощью связок . Для устранения нестабильностей в магнетронах принимаются специальные меры. Хороший эффект дают специальные связки, имеющие в простейшем случае форму колец (рис. 5-11). Одно из колец приваривается к четырем четным сегментам анодного блока, а другое - к четырем нечетным. Связки вносят в колебательную систему магнетрона дополнительные емкость и индуктивность. Вносимая емкость определяется не только размерами самих связок и их расстоянием от поверхности анодного блока, но и разностью высокочастотных потенциалов между двумя кольцами. Индуктивность зависит как от размеров самих связок, так и от токов, протекающих по связкам.

При противофазном виде колебаний каждое из колец соединяется с сегментами блока, находящимися под одинаковым потенциалом. Таким образом, разность фаз высокочастотных потенциалов двух связывающих колец равна π и емкостное действие связок весьма существенно. В то же время индуктивный эффект связок при π-колебаниях минимален, поскольку каждое кольцо приваривается к сегментам с одинаковым потенциалом, и уравнительные токи в связках близки к нулю. Следовательно, результирующее влияние связок при π-колебаниях имеет емкостный характер. Емкость, вносимая связками в резонаторы, параллельна их собственной емкости. В результате суммарная емкость увеличивается и длина волны при π-колебаниях возрастает.

При колебаниях других видов высокочастотные потенциалы сегментов, соединенных с каждым из колец, неодинаковы, и поэтому средняя разность потенциалов между связками меньше, чем при противофазных колебаниях. Вследствие этого вносимая связками емкость уменьшается, а вносимая индуктивность увеличивается, так как вследствие различия высокочастотных потенциалов двух сегментов, присоединенных к одному кольцу, в нем протекают уравнительные токи. Результирующее влияние связок носит индуктивный характер. Вносимая индуктивность параллельна собственной идуктивности резонаторов; суммарная индуктивность уменьшается, уменьшается и длина волны колебаний.

Изменение длины волны колебаний от величины n при использовании различных видов связок показано на рис. 5-10 (кривая 5 - для связок рис. 5-11, а, а кривая 4 - для связок рис. 5-11, б).

Из сравнения этих кривых с кривыми 1 и 2 видно, что применение связок позволяет значительно увеличить разность частот π-колебаний и соседнего с ним вида. Для устойчивой работы магнетрона необходимо, чтобы частота колебаний вида n = N/2-1 отличалась от частоты противофазных колебаний не менее чем на 4%. Обычно добиваются, чтобы разнос частот был порядка 10-15%.

Повышению устойчивости работы магнетрона на противофазном виде колебаний способствует также применение асимметричных связок, например колец, имеющих разрыв. Применение асимметричных связок нарушает ориентацию высокочастотных полей, возникающих при колебаниях, отличных от противофазного, и, таким образом, еще больше затрудняет их появление. Следует также отметить, что увеличение длины волны колебаний π-вида вследствие применения связок приводит к соответствующему понижению порогового напряжения, что сопровождается увеличением мощности генерируемых колебаний и к. п. д. магнетрона.

Применение связок имеет и некоторые недостатки. Так, например, высокочастотное поле, образуемое связками и не зависящее от азимутального угла, искажает в некоторой степени электрическое поле в пространстве взаимодействия и ухудшает работу магнетрона. Кроме того, введение связок увеличивает высокочастотные потери, величина которых растет с укорочением длины волны генерируемых колебаний. Для исключения этого влияния связки экранируют, размещая их в специальных канавках в анодном блоке.

Разнорезонаторный анодный блок . В магнетронах, работающих на волнах λ = 3 см и короче, используют другой метод разделения частот - разнорезонаторный анодный блок.

В разнорезонаторном анодном блоке размеры каждого второго резонатора несколько увеличиваются по сравнению с размерами в обычном анодном блоке; размеры же второй половины резонаторов уменьшаются (рис. 5-12). Получаются как бы две системы резонаторов, одна из которых настроена на короткую волну, а другая - на более длинную.

Для определения в разнорезонаторной системе длин волн колебаний, соответствующих различным значениям n, можно воспользоваться формулой (5-15), считая, что анодный блок состоит из двух различных систем: больших (h б) и малых (h м) резонаторов. При вычислении этих длин волн вместо λ 0 нужно подставлять резонансную длину волны большого или малого резонатора соответственно. Но так как число одинаковых резонаторов в системе вдвое меньше общего числа N резонаторов, то для каждой системы одинаковых резонаторов вводят свое число n", величина которого не может быть больше N/4.

На рис. 5-13 показано (кривая 3) изменение длины волны в зависимости от величины n в разнорезонаторном магнетроне (N = 18). Верхняя ветвь этой кривой, вплоть до n = 4, соответствует первой - длинноволновой группе колебаний при нулевом фазовом сдвиге между колебаниями в больших и малых резонаторах. Характер изменения длины волны здесь такой же, как и для обычного магнетрона без связок (кривая 1): с увеличением n длина волны уменьшается.

Нижняя ветвь кривой от n = 5 до n = N/2 = 9 соответствует второй - коротковолновой группе колебаний. Здесь с возрастанием n длина волны уменьшается. На рис. 5-13 приведена для сравнения также кривая 2 для магнетрона со связками.

Разнос частот при разных n зависит от соотношения h б /h м (рис. 5-12), возрастая при его увеличении. Однако при значительных величинах h б /h м усиливается влияние составляющей высокочастотного поля, не зависящей от азимутального угла и ухудшающей взаимодействие электронного потока с высокочастотным полем.

Преимущество разнорезонаторной системы перед анодным блоком со связками заключается прежде всего в том, что на величину разделения частот не влияет высота анодного блока. Кроме того, высокочастотные потери в разнорезонаторном анодном блоке значительно меньше, что позволяет повысить к. п. д. магнетрона.

5-6. Параметры и характеристики магнетронов

Многорезонаторные магнетроны, как и другие электронные приборы, характеризуются рядом параметров, обусловливающих эксплуатационный, предельный, климатический и другие режимы их работы.

Параметры электрического режима . Справочными данными, как правило, оговариваются: величины напряжения U н или тока I н накала и их допустимые отклонения, не превышающие обычно ±10%; номинальное анодное напряжение U а и допустимый верхний предел этой величины; номинальное и допустимые верхнее и нижнее значения тока I а; напряженность или индукция магнитного поля. Для магнетронов, работающих в импульсном режиме, в справочнике указывают номинальные и допустимые величины длительности импульсов анодного напряжения, их скважности и крутизны фронтов - величин, в значительной степени определяющих спектр генерируемых магнетроном колебаний.

Мощность генерируемых колебаний . Многорезонаторные магнетроны используются обычно в качестве генераторов мощных СВЧ колебаний в импульсном или непрерывном режиме. Поэтому важнейший параметр этих приборов - величина генерируемой мощности

P вых = ηI а U а, (5-61)

где η - полный к. п. д. магнетрона. Таким образом, величина Р вых зависит не только от электрического режима работы магнетрона, но и от другого важнейшего параметра - к. п. д. прибора.

Коэффициент полезного действия магнетрона определяется отношением мощности сверхвысокочастотных колебаний к мощности, подводимой к магнетрону от источника постоянного напряжения в анодной цепи.

Электроны, получая энергию от постоянного электрического поля, не полностью передают ее высокочастотному полю резонаторов. Некоторые электроны вообще не участвуют в механизме передачи энергии, так как в самом начале, получив дополнительное ускорение, возвращаются обратно на катод и нагревают его, отдавая при соударении с его поверхностью оставшуюся энергию. Рабочие электроны, образующие спицы и многократно взаимодействующие с высокочастотным полем, в большинстве случаев достигают анода, не израсходовав полностью своей энергии, и передают ее остаток аноду, нагревая его при соударении. Таким образом, часть энергии, полученной электронами от постоянного электрического поля, расходуется бесполезно. Этот расход энергии называют электронными потерями. Отношение энергии, полученной высокочастотным полем от электронного потока, к полной энергии, сообщенной электронам постоянным электрическим полем, называется электронным к. п. д. магнетрона η эл. Эта величина характеризует эффективность взаимодействия электронного потока с переменным электрическим полем. Энергия высокочастотных колебаний расходуется также и в самих резонаторах (на восполнение потерь, обусловленных активным сопротивлением), в устройствах вывода энергии, в диэлектриках и т. п. Эти потери определяются к. п. д. колебательной системы η к. Коэффициент полезного действия магнетрона, таким образом, равен:

η = η эл η к. (5-17)

Величина электронного к. п. д. магнетрона существенным образом зависит от режима его работы. Для определения η эл необходимо знать не только энергию, получаемую электроном от постоянного электрического поля, но также величину неизрасходованной электроном энергии (кинетическую энергию, с которой электрон достигает анода). Для выполнения условий синхронизма электрон должен двигаться у поверхности анода со скоростью, не меньшей U c . Поэтому кинетическая энергия электрона, достигающего анода, не может быть меньше eU c . Следовательно, электронный к. п. д. магнетрона равен:

Однако рассчитанный по этой формуле электронный к. п. д. оказывается выше экспериментальной величины η эл. Объясняется это тем, что кинетическая энергия электрона, попадающего на анод, в действительности значительно больше величины eU c . Электроны движутся в пространстве взаимодействия, описывая петлеобразные траектории. Если анодное напряжение близко к пороговому напряжению, то электроны медленно поднимаются от катода к аноду и попадают на анод, находясь, как правило, в вершине "петли". Если тангенциальная скорость движения оси образующей окружности равна (из условия синхронизма) U с, то тангенциальная скорость движения электрона относительно катода примерно в 2 раза больше, а его кинетическая энергия - в 4 раза больше принятой величины. В рабочем режиме анодное напряжение в магнетроне обычно больше величины U п и электроны поднимаются к аноду по более крутой петлеобразной траектории. Они могут достигать анода как на вершине петли, так и у ее начала, где скорость электрона близка к нулю. Поэтому среднее значение кинетической энергии у поверхности примерно в 2 раза больше величины eU c . Величина электронного к. п. д. в современных многорезонаторных магнетронах достигает величины 50-70% и более.

Рабочая длина волны λ 0 или рабочая частота колебаний ω 0 определяется, как это было показано в § 5-5, параметрами резонаторов и конструкцией анодного блока. В многорезонаторных магнетронах обычной конструкции изменение рабочей частоты в небольших пределах может быть получено с помощью специальных устройств, изменяющих емкость или индуктивность резонаторов (см далее § 5-7).

При конструировании генераторных устройств на многорезонаторных магнетронах особое внимание уделяется стабилизации частоты колебаний. С этой целью, как уже было сказано выше, используются связки, применяются разно-резонаторные анодные блоки и др. Однако рабочая частота магнетрона существенным образом зависит от характера нагрузки и способа ее подключения к магнетрону. Степень изменения частоты под влиянием нагрузки характеризуют такими параметрами, как электронное смещение частоты, затягивание частоты и др. Наиболее полно эти явления отображаются так называемой нагрузочной характеристикой магнетрона. Подробно работа магнетрона в реальных условиях рассматривается в курсе "Радиопередающие устройства", и поэтому обсуждение этих вопросов выходит за рамки настоящей книги.

Рабочие характеристики магнетронов . В качестве рабочих характеристик магнетронов приняты зависимости U a = f(I a) при постоянных величинах В, Р вых, η и ω 0 . Обычно линии постоянных значений В, Р вых и η изображаются на одном графике в координатах I а - U a . Эти семейства кривых и называют рабочими характеристиками многорезонаторных магнетронов.

На рис. 5-14 показаны рабочие характеристики магнетрона со следующими параметрами: рабочий режим - импульсный, число резонаторов N = 8, радиус катода r к = 0,3 см, радиус анода r а = 0,8 см, высота анодного блока h = 2 см, частота (в режиме π-колебаний) f = 2800 Мгц, рабочее анодное напряжение U а = 16 кв, напряженность магнитного поля в рабочем режиме H = 128000 а/м, рабочий анодный ток (в импульсе) I а = 20 а, к. п. д. η = 42%, генерируемая мощность (в импульсе) Р вых = 35 квт.

При малых анодных напряжениях и соответственно меньших В к. п. д. магнетрона невелик. Поэтому использование низких анодных напряжений не имеет смысла. Значительное увеличение анодного напряжения, хотя и сопровождается некоторым ростом к. п. д. и генерируемой мощности, требует, кроме того, повышения напряженности магнитного поля. Работа с очень большими значениями U a и В встречает серьезные технические затруднения; они не оправдываются повышением к. п. д., который при увеличении U a растет сначала быстро, а затем медленно.

При малых анодных токах магнетрон работает неустойчиво. Большая часть электронов возвращается на катод, к. п. д. и генерируемая мощность невелеки. Чрезмерное увеличение тока также нежелательно, так как при этом сильно разогревается анодный блок, катод работает с перегрузкой и требуется дальнейшее повышение U a .

Вследствие указанных причин для каждого типа магнетрона существуют рабочие пределы изменений U a и I а. Другие параметры (В, η, Р вых) при выбранных значениях анодного напряжения и тока однозначно определяются рабочими характеристиками.

Рассмотрим семейство кривых В = const. При заданной величине В и при повышении U a анодный ток вначале мал и растет медленно. Эта часть кривых соответствует анодным напряжениям ниже порогового. Большинство электронов не попадает на анод, а под действием силы F м возвращаются на катод. При дальнейшем увеличении U a анодный ток резко увеличивается и кривые U a = f(I a) представляют собой отрезки почти прямых линий, образующих с осью абсцисс небольшой угол. Эта рабочая часть характеристик соответствует значениям U a > U п.

С увеличением В для получения той же величины I a требуются большие значения анодного напряжения, причем, как это видно из рис. 5-14, одинаковые приращения В требуют и одинаковых приращений U a (линии В = const при равных приращениях В расположены на одном и том же расстоянии друг от друга). Иными словами, анодное напряжение пропорционально напряженности магнитного поля, что полностью согласуется с формулой (5-14) для порогового напряжения. Величину U п здесь легко определить графически, продолжив линейную часть характеристик B = const до пересечения с осью ординат.

Кривые второго семейства (P выx = const) имеют гиперболический характер. Колебательная мощность в магнетроне определяется выражением Р вых = ηI а U а. Коэффициент полезного действия меняется в зависимости от I а и U a . Поэтому линии P выx = const не являются правильными гиперболами.

На рис. 5-14 видно, что I а = const и при увеличении U a к. п. д. магнетрона увеличивается. Это объясняется главным образом тем, что увеличение U a и В сопровождается уменьшением радиуса образующей окружности и, следовательно снижением скорости, с которой электроны попадают на анод. С увеличением анодного тока (при В = const) η сначала несколько увеличивается, а затем снижается.

Небольшая величина η при очень малых анодных токах объясняется большими электронными потерями. Кроме того, вследствие малой интенсивности колебаний в резонаторах фокусирующее действие переменного электрического поля незначительно. Электроны плохо группируются в спицы, и условие синхронизма выполняется лишь для небольшой части электронов. При некотором увеличении I а к. п. д. возрастает, так как влияние указанных причин ослабляется. Дальнейшее увеличение тока сопровождается падением η за счет увеличения радиальной составляющей кинетической энергии у анода, а также вследствие взаимного расталкивания электронов в спицах.

5-7. Особенности конструкции многорезонаторных магнетронов

Условия работы магнетрона отличаются от условий работы не только обычных электронных ламп, но и других СВЧ приборов. Значительная часть электронов, эмиттируемых катодом, возвращается обратно. Эти электроны, попадая на катод с некоторым запасом кинетической энергии, разогревают его и вызывают с поверхности катода дополнительную вторичную эмиссию. На катоде выделяется около 5% всей мощности, рассеиваемой в магнетроне. Поток электронов, образуемый за счет вторичной эмиссии, составляет значительную часть электронов потока, эмиттируемого катодом. Величина вторично-эмиссионного тока такова, что магнетроны обычно продолжают нормально работать, если после их включения разомкнуть цепь накала. Поэтому катод магнетрона должен обеспечить значительную термоэлектронную эмиссию только в момент его включения. К особенностям работы катода в магнетроне следует отнести также сильное электрическое поле, так как обычно потенциал анода равен нескольким киловольтам, а в мощных магнетронах - десяткам киловольт, в то время как расстояния анод - катод не превышают нескольких сантиметров.

Катод в магнетроне должен обеспечить термоэмиссионный ток большой плотности. Он должен, кроме того, быть стойким к перегреву и действию сильных электрических полей, а также сохранять постоянство эмиссии во времени.

Наиболее часто в магнетронах используются подогревные оксидные катоды, которые позволяют получить плотность тока до 40 а/см 2 и способны работать в электрических полях до 70 кв/см. Коэффициент вторичной эмиссии этих катодов достигает нескольких десятков. В магнетронах применяют также вольфрамо-ториевые катоды, спекаемые из порошка, содержащего 96% вольфрама и 4% окиси тория. Эти катоды очень прочны, стойки к отравлению газами и после искрения восстанавливают первоначальную эмиссию. Камерные металлогубчатые и пропитанные катоды могут обеспечить ток плотностью до 80 а/см 2 и устойчиво работают при напряжениях до 20 кв.

Важную роль в работе магнетрона играет постоянное магнитное поле. Для получения высокого к. п. д. индукция магнитного поля должна быть порядка 0,3-0,6 вб/м 2 . Такое сильное магнитное поле создают мощные постоянные магниты специальной формы (рис. 5-15). В тех случаях, когда требуются особенно сильные магнитные поля, применяются пакетные магнетроны, у которых полюсные наконечники из ферромагнитного материала служат торцовыми стенками анодного блока. В пакетных магнетронах значительно сокращен воздушный промежуток между полюсами, что позволяет повысить напряженность магнитного поля или же уменьшить вес и габариты постоянного магнита, который обычно значительно тяжелее и больше по размерам самого магнетрона.

Частоту колебаний в магнетроне можно перестроить за счет изменения индуктивности или емкости колебательной системы с помощью металлических штырей - плунжеров, погружаемых в отверстия резонаторов, либо с помощью специальных металлических колец, расположенных в пазах на торцовой поверхности блока. Оба эти метода позволяют изменять частоту магнетрона не более чем на 5-7% от резонансной частоты. При большем отклонении частоты от среднего значения ухудшаются условия отделения противофазного вида колебаний от соседних видов.

5-8. Митрон

Определение . Митроном называют перестраиваемый по частоте прибор, работающий по принципу многорезонаторного магнетрона, но отличающийся от него устройством колебательной системы и эмиттирующего электроны катода.

Устройство митрона схематически показано на рис. 5-16, а. Анодный блок представляет собой систему (рис. 5-16, б) в виде двух дисков с рядом направленных навстречу друг другу штырей (сегментов). В центре пространства взаимодействия помещается металлический цилиндр, не предназначенный, в отличие от многорезонаторного магнетрона, для эмиссии электронов. Этот цилиндр, называемый холодным катодом или отрицательным электродом, вместе со штырями образует колебательную систему. Катод, в виде вольфрамовой спирали, эмиттирующий электроны, вынесен из пространства взаимодействия и окружен управляющим электродом в виде усеченного конуса с отверстием посредине. С помощью дисковых выводов анодный блок соединяется с внешней колебательной системой, конфигурация которой может быть различной. На рис. 5-16, в показана колебательная система в виде короткозамкнутого отрезка волновода, длина которого может изменяться с помощью короткозамыкающего поршня. Другая часть волновода представляет собой трансформатор волнового сопротивления, через который к митрону подключается фидер, идущий к нагрузке.

Дисковые выводы холодного катода, управляющего электрода и анодного блока электрически разделяются керамическими цилиндрами.

Магнитное поле, вектор напряженности которого параллелен оси прибора, как и в магнетроне, создается внешними магнитами.

Анодная колебательная система обычно заземляется, на катод подается отрицательное напряжение, а на управляющий электрод - тоже отрицательное напряжение, но несколько меньшей величины, так что между катодом и этим электродом существует ускоряющее поле.

Принцип действия митрона практически тождествен принципу работы многорезонаторного магнетрона. Митрон тоже работает, как правило, в режиже π-колебаний; так же как и в магнетроне, в пространстве взаимодействия формируются электронные спицы, вращающиеся синхронно с высокочастотным полем, протекают те же процессы энергетического взаимодействия электронов с полем, при которых они отдают волне потенциальную энергию.

Отличие заключается в несколько ином, нежели в магнетроне, электрическом режиме, который обеспечивается вынесенным из пространства взаимодействия эмиттирующим катодом и использованием дополнительной внешней низкодобротной колебательной системы. Эти отличия обусловливают возможность электронного управления частотой колебаний при изменении анодного напряжения. Поэтому митрон иногда в литературе называют магнетроном, настраиваемым напряжением.

В митроне, по сравнению с магнетроном, существенно уменьшена добротность Q колебательной системы. Это достигнуто за счет использования замедляющей системы типа встречных штырей, системы более широкополосной, чем замкнутая цепочка объемных резонаторов в магнетроне, а также подключением внешней колебательной системы, например в виде отрезка волновода. Уменьшение Q естественно сопровождается снижением уровня энергии, запасаемой в контуре, а следовательно, уменьшением амплитуды высокочастотных колебаний и, что особенно существенно, уменьшением реактивной составляющей тока контура. Вполне понятно, что уменьшение амплитуды высокочастотного поля в контуре, т. е. в зазоре между штырями требует снижения плотности объемного заряда в пространстве взаимодействия, так как в противном случае процесс формирования и фазовой фокусировки спиц будет неэффективным. В митроне уменьшение объемного заряда в пространстве взаимодействия достигается, главным образом, за счет конструкции катодного узла. Число электронов, попадающих в пространство взаимодействия, регулируется потенциалом U у.э управляющего электрода. Экспериментальные исследования показали [Л. 7], что при снижении плотности объемного заряда степень модуляции электронного потока по плотности возрастает. Иначе говоря, уменьшение числа электронов, поступающих в пространство взаимодействия, приводит в основном к снижению числа нерабочих электронов; плотность же объемного заряда в спицах уменьшается значительно меньше. Оптимальный режим работы митрона достигается в том случае, когда величина анодного тока равна примерно одной трети от тока, обусловленного поступлением электронов через отверстие в управляющем электроде.

Очень важно, что при таком режиме образования объемного заряда в пространстве взаимодействия величина анодного тока оказывается ограниченной. Иными словами, увеличение анодного напряжения не может привести к существенному росту анодного тока.

С изменением величины анодного напряжения в митроне, как и в магнетроне, нарушаются условия синхронизации вращения сверхвысокочастотного поля и электронных спиц. Появляется сдвиг фаз между электрическим полем и электронным током, возникает реактивная электронная проводимость. Для выполнения баланса фаз при новом значении U a реактивная проводимость резонатора также должна измениться. Это изменение, естественно, повлечет за собой изменение частоты колебаний. Но в магнетроне, где в силу высокой добротности реактивный ток резонатора значительно больше реактивной составляющей электронного тока, это изменение частоты невелико. В митроне же с низкодобротной колебательной системой изменение частоты оказывается значительным.

Кроме того, в силу ограничения тока в митроне изменение анодного напряжения и частоты колебаний не сопровождается, как это было в магнетроне (см. рис. 5-14), резким изменением мощности.

Рабочие характеристики и параметры . В качестве основных характеристик митрона используются зависимости Pвыx = f(U а); I а = φ(U а) и ω = ψ(U a) (рис. 5-17).

Ширина полосы Δω электронной перестройки частоты зависит от конструкции прибора и может изменяться для митронов разных типов от 15% относительно средней рабочей частоты до октавы (ω макс /ω мин ≈ 2) и более. Расширение полосы Δω неизбежно сопровождается уменьшением выходной мощности P вых и к. п. д.

Так, в относительно узкополосных митронах величина выходной мощности измеряется единицами или десятками ватт при изменении значения Р вых в диапазоне перестройки частоты не более чем на 2-3 дб и к. п. д. до 40%.

При расширении полосы Δω до октавы выходная мощность уменьшается до 0,5-3 вт, а к. п. д. снижается до 15-25%.

Величина выходной мощности в митроне может регулироваться с помощью напряжения U y.э на управляющем электроде. Однако с увеличением U y.э неизбежно меняется и частота генерируемых колебании (рис. 5-18).

Степень изменения частоты при изменении напряжении U а и U y.э не различна. Крутизна S кривой ω = ψ(U a) составляет 0,5-5 мгц/в, а крутизна S y.э не превышает 0,9 мгц/в. Митроны используются, главным образом, в качестве маломощных гетеродинов. По уровню собственных шумов они в настоящее время уступают отражательным клистронам и лампам обратной волны типа O.

С цилиндрическим анодом вокруг стержневидного катода. Ему не удалось измерить массу электрона из-за проблем с получением достаточного уровня вакуума в лампе, однако в ходе работы были разработаны математические модели движения электронов в электрических и магнитных полях.

Французский учёный Морис Понт с сотрудниками из парижской фирмы «КСФ» в 1935 году создали электронную лампу с вольфрамовым катодом, окружённым резонаторными анодными сегментами. Она была предшественницей магнетронов с резонаторными камерами.

Конструкция многорезонаторного магнетрона Алексеева - Малярова, обеспечивающего 300-ваттное излучение на волне 10 сантиметров, созданного в 1936-39 гг., стала известна мировому сообществу благодаря публикации 1940 г. (Alexeev Н. F., Malyarov Д. Е. Getting powerful vibrations of magnetrons in centimeter wavelength range // Magazine of Technical Physics. 1940. Vol. 10. No. 15, P. 1297-1300.)

Своим появлением на свет многорезонаторный магнетрон Алексеева - Малярова обязан радиолокации. Работы по радиолокации были развернуты в СССР почти одновременно с началом радиолокационных работ в Англии и США. По признанию зарубежных авторов, к началу 1934 года СССР продвинулся в этих работах более, чем США и Англия. (Brown, Louis. A Radar History of World War II . Technical and Military Imperatives. Bristol: Institute of Physics Publishing, 1999. ISBN 0-7503-0659-9 .)

В 1940 британские физики Джон Рэндалл (англ. John Randall ) и Гарри Бут (англ. Harry Boot ) изобрели резонансный магнетрон . Новый магнетрон давал импульсы высокой мощности, что позволило разработать радар сантиметрового диапазона. Радар с короткой длиной волны позволял обнаруживать более мелкие объекты . Кроме того, компактный размер магнетрона привёл к резкому уменьшению размеров радарной аппаратуры , что позволило устанавливать её на самолетах .

В 1949 году в США инженерами Д. Уилбуром и Ф. Питерсом были разработаны методы изменения частоты магнетрона с помощью управления напряжением (прибор "митрон" - mitron ).

Характеристики

Магнетроны могут работать на различных частотах от 0,5 до 100 ГГц, с мощностями от нескольких Вт до десятков кВт в непрерывном режиме, и от 10 Вт до 5 МВт в импульсном режиме при длительностях импульсов главным образом от долей до десятков микросекунд.

Магнетроны обладают высоким КПД (до 80 %).

Магнетроны бывают как неперестраиваемые, так и перестраиваемые в небольшом диапазоне частот (обычно менее 10 %). Для медленной перестройки частоты применяются механизмы, приводимые в движение рукой, для быстрой (до нескольких тысяч перестроек в секунду) - ротационные и вибрационные механизмы.

Магнетроны как генераторы сверхвысоких частот широко используются в современной радиолокационной технике.

Конструкция

Резонансный магнетрон состоит из анодного блока, который представляет собой, как правило, металлический толстостенный цилиндр с прорезанными в стенках полостями, выполняющими роль объёмных резонаторов . Резонаторы образуют кольцевую колебательную систему . К анодному блоку закрепляется цилиндрический катод . Внутри катода закреплён подогреватель. Магнитное поле , параллельное оси прибора, создаётся внешними магнитами или электромагнитом.

Для вывода СВЧ энергии используется, как правило, проволочная петля, закреплённая в одном из резонаторов, или отверстие из резонатора наружу цилиндра.

Резонаторы магнетрона образуют кольцевую колебательную систему, около них происходит взаимодействие пучка электронов и электромагнитной волны. Поскольку эта система в результате кольцевой конструкции замкнута сама на себя, то её можно возбудить лишь на определённых видах колебаний, из которых важное значение имеет π -вид. Среди нескольких резонансных частот системы (при N резонаторах в системе возможно существование любого целого количества стоячих волн в диапазоне от 1 до N/2) чаще всего используется π-вид колебаний, при котором фазы в смежных резонаторах различаются на π . При наличии рядом с рабочей частотой (ближе 10%) других резонансных частот возможны перескоки частоты и нестабильная работа прибора. Для предотвращения подобных эффектов в магнетронах с одинаковыми резонаторами в них могут вводится различные связки либо применяться магнетроны с разными размерами резонаторов (четные резонаторы с одним размером, нечётные - с другим).

Отдельные модели магнетронов могут иметь различную конструкцию. Так, резонаторная система выполняется в виде резонаторов нескольких типов: щель-отверстие, лопаточных, щелевых и т. д.

Принцип работы

Электроны эмиттируются из катода в пространство взаимодействия, где на них воздействует постоянное электрическое поле анод-катод, постоянное магнитное поле и поле электромагнитной волны. Если бы не было поля электромагнитной волны, электроны бы двигались в скрещённых электрическом и магнитном полях по сравнительно простым кривым: эпициклоидам (кривая, которую описывает точка на круге, катящемся по наружной поверхности окружности большего диаметра, в конкретном случае - по наружной поверхности катода). При достаточно высоком магнитном поле (параллельном оси магнетрона) электрон, движущийся по этой кривой, не может достичь анода (по причине действия на него со стороны этого магнитного поля силы Лоренца), при этом говорят, что произошло магнитное запирание диода. В режиме магнитного запирания некоторая часть электронов движется по эпициклоидам в пространстве анод-катод. Под действием собственного поля электронов, а также статистических эффектов (дробовой шум) в этом электронном облаке возникают неустойчивости, которые приводят к генерации электромагнитных колебаний, эти колебания усиливаются резонаторами. Электрическое поле возникшей электромагнитной волны может замедлять или ускорять электроны. Если электрон ускоряется полем волны, то радиус его циклотронного движения увеличивается и он отклоняется в направлении катода. При этом энергия передаётся от волны к электрону. Если же электрон тормозится полем волны, то его энергия передаётся волне, при этом циклотронный радиус электрона уменьшается, центр окружности вращения смещается ближе к аноду и он получает возможность достигнуть анода. Поскольку электрическое поле анод-катод совершает положительную работу только если электрон достигает анода, энергия всегда передаётся в основном от электронов к электромагнитной волне. Однако, если скорость вращения электронов вокруг катода не будет совпадать с фазовой скоростью электромагнитной волны, один и тот же электрон будет попеременно ускоряться и тормозиться волной, в результате эффективность передачи энергии волне будет небольшой. Если средняя скорость вращения электрона вокруг катода совпадает с фазовой скоростью волны, электрон может находиться непрерывно в тормозящей области, при этом передача энергии от электрона к волне наиболее эффективна. Такие электроны группируются в сгустки (так называемые «спицы»), вращающиеся вместе с полем. Многократное, в течение ряда периодов, взаимодействие электронов с ВЧ-полем и фазовая фокусировка в магнетроне обеспечивают высокий коэффициент полезного действия и возможность получения больших мощностей.

Применение

В радарных устройствах волновод подсоединён к антенне, которая может представлять собой как целевой волновод, так и конический рупорный облучатель в паре с параболическим отражателем (так называемая «тарелка»). Магнетрон управляется короткими высокоинтенсивными импульсами подаваемого напряжения, в результате чего в пространство излучается короткий импульс микроволновой энергии . Небольшая порция этой энергии отражается от объекта радиолокации обратно к антенне, попадает в волновод, которым она направляется к чувствительному приёмнику. После дальнейшей обработки сигнала он, в конце концов, появляется на электронно-лучевой трубке (ЭЛТ) в виде радарной карты А1.

В микроволновых печах волновод заканчивается отверстием, прозрачным для радиочастот (непосредственно в камере для готовки). Важно, чтобы во время работы печи в ней находились продукты. Тогда микроволны поглощаются вместо того, чтобы отражаться обратно в волновод, где интенсивность стоячих волн может вызвать искрение. Искрение, продолжающееся достаточно долго, может повредить магнетрон. Если в микроволновой печи готовится небольшое количество пищи, лучше поставить в камеру ещё и стакан воды для поглощения микроволн.

Напишите отзыв о статье "Магнетрон"

Примечания

  1. , с. 353.
  2. H. Greinacher (1912) (Об аппарате для определения e/m), Verhandlungen der Deutschen Physikalischen Gesellschaft , 14 : 856-864. (нем.)
  3. (англ.)
  4. Albert W. Hull (1921) Physical Review , 18 (1) : 31-57. Также: Albert W. Hull, "The magnetron," Journal of the American Institute of Electrical Engineers , vol. 40, no. 9, pages 715-723 (September 1921).
  5. Biographical information about August Žáček:
    • R. H. Fürth, Obituary: "Prof. August Žáček," Nature , vol. 193, no. 4816, page 625 (1962).
    • "The 70th birthday of Prof. Dr. August Žáček," Czechoslovak Journal of Physics , vol. 6, no. 2, pages 204-205 (1956). Available on-line at: .
  6. Моuromtseeff J. Е. Proc. Natl.-Electr. Conf., 1945, № 33, p. 229 – 233.
  7. . М. М. Лобанов. Развитие советской радиолокационной техники . Проверено 27 января 2016.
  8. . Bournemouth University (1995-2009). Проверено 23 августа 2009. .
  9. Я. З. Перпя. Как работает радиолокатор. Оборонгиз, 1955
  10. Schroter, B. (Spring 2008). «». Imperial Engineer 8 : 10. Проверено 2009-08-23.
  11. . Dora Media Productions (1999-2007). Проверено 23 августа 2009. .
  12. / Proceedings of the IRE (Volume:43, Issue: 3, 1955) pp 332-338, doi:10.1109/JRPROC.1955.278140
  13. / V. N. Shevchik, Fundamentals of Microwave Electronics: International Series of Monographs on Electronics and Instrumentation, Elsevier, 2014 ISBN 9781483194769 , p239 (англ.)
  14. // Наука и Жизнь №10, 2004

Ссылки

  • Магнетрон - статья из .
  • Магнетронного типа приборы - статья из Большой советской энциклопедии .(недоступная ссылка с 05-04-2015 (1589 дней))

Литература

  • Кулешов В.Н., Удалов Н.Н., Богачев В.М. и др. Генерирование колебаний и формирование радиосигналов. - М .: МЭИ, 2008. - 416 с. - ISBN 978-5-383-00224-7 .

Отрывок, характеризующий Магнетрон

Он поцеловался с сестрой рука в руку, по их привычке.
– Здравствуй, Мари, как это ты добралась? – сказал он голосом таким же ровным и чуждым, каким был его взгляд. Ежели бы он завизжал отчаянным криком, то этот крик менее бы ужаснул княжну Марью, чем звук этого голоса.
– И Николушку привезла? – сказал он также ровно и медленно и с очевидным усилием воспоминанья.
– Как твое здоровье теперь? – говорила княжна Марья, сама удивляясь тому, что она говорила.
– Это, мой друг, у доктора спрашивать надо, – сказал он, и, видимо сделав еще усилие, чтобы быть ласковым, он сказал одним ртом (видно было, что он вовсе не думал того, что говорил): – Merci, chere amie, d"etre venue. [Спасибо, милый друг, что приехала.]
Княжна Марья пожала его руку. Он чуть заметно поморщился от пожатия ее руки. Он молчал, и она не знала, что говорить. Она поняла то, что случилось с ним за два дня. В словах, в тоне его, в особенности во взгляде этом – холодном, почти враждебном взгляде – чувствовалась страшная для живого человека отчужденность от всего мирского. Он, видимо, с трудом понимал теперь все живое; но вместе с тем чувствовалось, что он не понимал живого не потому, чтобы он был лишен силы понимания, но потому, что он понимал что то другое, такое, чего не понимали и не могли понять живые и что поглощало его всего.
– Да, вот как странно судьба свела нас! – сказал он, прерывая молчание и указывая на Наташу. – Она все ходит за мной.
Княжна Марья слушала и не понимала того, что он говорил. Он, чуткий, нежный князь Андрей, как мог он говорить это при той, которую он любил и которая его любила! Ежели бы он думал жить, то не таким холодно оскорбительным тоном он сказал бы это. Ежели бы он не знал, что умрет, то как же ему не жалко было ее, как он мог при ней говорить это! Одно объяснение только могло быть этому, это то, что ему было все равно, и все равно оттого, что что то другое, важнейшее, было открыто ему.
Разговор был холодный, несвязный и прерывался беспрестанно.
– Мари проехала через Рязань, – сказала Наташа. Князь Андрей не заметил, что она называла его сестру Мари. А Наташа, при нем назвав ее так, в первый раз сама это заметила.
– Ну что же? – сказал он.
– Ей рассказывали, что Москва вся сгорела, совершенно, что будто бы…
Наташа остановилась: нельзя было говорить. Он, очевидно, делал усилия, чтобы слушать, и все таки не мог.
– Да, сгорела, говорят, – сказал он. – Это очень жалко, – и он стал смотреть вперед, пальцами рассеянно расправляя усы.
– А ты встретилась с графом Николаем, Мари? – сказал вдруг князь Андрей, видимо желая сделать им приятное. – Он писал сюда, что ты ему очень полюбилась, – продолжал он просто, спокойно, видимо не в силах понимать всего того сложного значения, которое имели его слова для живых людей. – Ежели бы ты его полюбила тоже, то было бы очень хорошо… чтобы вы женились, – прибавил он несколько скорее, как бы обрадованный словами, которые он долго искал и нашел наконец. Княжна Марья слышала его слова, но они не имели для нее никакого другого значения, кроме того, что они доказывали то, как страшно далек он был теперь от всего живого.
– Что обо мне говорить! – сказала она спокойно и взглянула на Наташу. Наташа, чувствуя на себе ее взгляд, не смотрела на нее. Опять все молчали.
– Andre, ты хоч… – вдруг сказала княжна Марья содрогнувшимся голосом, – ты хочешь видеть Николушку? Он все время вспоминал о тебе.
Князь Андрей чуть заметно улыбнулся в первый раз, но княжна Марья, так знавшая его лицо, с ужасом поняла, что это была улыбка не радости, не нежности к сыну, но тихой, кроткой насмешки над тем, что княжна Марья употребляла, по ее мнению, последнее средство для приведения его в чувства.
– Да, я очень рад Николушке. Он здоров?

Когда привели к князю Андрею Николушку, испуганно смотревшего на отца, но не плакавшего, потому что никто не плакал, князь Андрей поцеловал его и, очевидно, не знал, что говорить с ним.
Когда Николушку уводили, княжна Марья подошла еще раз к брату, поцеловала его и, не в силах удерживаться более, заплакала.
Он пристально посмотрел на нее.
– Ты об Николушке? – сказал он.
Княжна Марья, плача, утвердительно нагнула голову.
– Мари, ты знаешь Еван… – но он вдруг замолчал.
– Что ты говоришь?
– Ничего. Не надо плакать здесь, – сказал он, тем же холодным взглядом глядя на нее.

Когда княжна Марья заплакала, он понял, что она плакала о том, что Николушка останется без отца. С большим усилием над собой он постарался вернуться назад в жизнь и перенесся на их точку зрения.
«Да, им это должно казаться жалко! – подумал он. – А как это просто!»
«Птицы небесные ни сеют, ни жнут, но отец ваш питает их», – сказал он сам себе и хотел то же сказать княжне. «Но нет, они поймут это по своему, они не поймут! Этого они не могут понимать, что все эти чувства, которыми они дорожат, все наши, все эти мысли, которые кажутся нам так важны, что они – не нужны. Мы не можем понимать друг друга». – И он замолчал.

Маленькому сыну князя Андрея было семь лет. Он едва умел читать, он ничего не знал. Он многое пережил после этого дня, приобретая знания, наблюдательность, опытность; но ежели бы он владел тогда всеми этими после приобретенными способностями, он не мог бы лучше, глубже понять все значение той сцены, которую он видел между отцом, княжной Марьей и Наташей, чем он ее понял теперь. Он все понял и, не плача, вышел из комнаты, молча подошел к Наташе, вышедшей за ним, застенчиво взглянул на нее задумчивыми прекрасными глазами; приподнятая румяная верхняя губа его дрогнула, он прислонился к ней головой и заплакал.
С этого дня он избегал Десаля, избегал ласкавшую его графиню и либо сидел один, либо робко подходил к княжне Марье и к Наташе, которую он, казалось, полюбил еще больше своей тетки, и тихо и застенчиво ласкался к ним.
Княжна Марья, выйдя от князя Андрея, поняла вполне все то, что сказало ей лицо Наташи. Она не говорила больше с Наташей о надежде на спасение его жизни. Она чередовалась с нею у его дивана и не плакала больше, но беспрестанно молилась, обращаясь душою к тому вечному, непостижимому, которого присутствие так ощутительно было теперь над умиравшим человеком.

Князь Андрей не только знал, что он умрет, но он чувствовал, что он умирает, что он уже умер наполовину. Он испытывал сознание отчужденности от всего земного и радостной и странной легкости бытия. Он, не торопясь и не тревожась, ожидал того, что предстояло ему. То грозное, вечное, неведомое и далекое, присутствие которого он не переставал ощущать в продолжение всей своей жизни, теперь для него было близкое и – по той странной легкости бытия, которую он испытывал, – почти понятное и ощущаемое.
Прежде он боялся конца. Он два раза испытал это страшное мучительное чувство страха смерти, конца, и теперь уже не понимал его.
Первый раз он испытал это чувство тогда, когда граната волчком вертелась перед ним и он смотрел на жнивье, на кусты, на небо и знал, что перед ним была смерть. Когда он очнулся после раны и в душе его, мгновенно, как бы освобожденный от удерживавшего его гнета жизни, распустился этот цветок любви, вечной, свободной, не зависящей от этой жизни, он уже не боялся смерти и не думал о ней.
Чем больше он, в те часы страдальческого уединения и полубреда, которые он провел после своей раны, вдумывался в новое, открытое ему начало вечной любви, тем более он, сам не чувствуя того, отрекался от земной жизни. Всё, всех любить, всегда жертвовать собой для любви, значило никого не любить, значило не жить этою земною жизнию. И чем больше он проникался этим началом любви, тем больше он отрекался от жизни и тем совершеннее уничтожал ту страшную преграду, которая без любви стоит между жизнью и смертью. Когда он, это первое время, вспоминал о том, что ему надо было умереть, он говорил себе: ну что ж, тем лучше.
Но после той ночи в Мытищах, когда в полубреду перед ним явилась та, которую он желал, и когда он, прижав к своим губам ее руку, заплакал тихими, радостными слезами, любовь к одной женщине незаметно закралась в его сердце и опять привязала его к жизни. И радостные и тревожные мысли стали приходить ему. Вспоминая ту минуту на перевязочном пункте, когда он увидал Курагина, он теперь не мог возвратиться к тому чувству: его мучил вопрос о том, жив ли он? И он не смел спросить этого.

Болезнь его шла своим физическим порядком, но то, что Наташа называла: это сделалось с ним, случилось с ним два дня перед приездом княжны Марьи. Это была та последняя нравственная борьба между жизнью и смертью, в которой смерть одержала победу. Это было неожиданное сознание того, что он еще дорожил жизнью, представлявшейся ему в любви к Наташе, и последний, покоренный припадок ужаса перед неведомым.
Это было вечером. Он был, как обыкновенно после обеда, в легком лихорадочном состоянии, и мысли его были чрезвычайно ясны. Соня сидела у стола. Он задремал. Вдруг ощущение счастья охватило его.
«А, это она вошла!» – подумал он.
Действительно, на месте Сони сидела только что неслышными шагами вошедшая Наташа.
С тех пор как она стала ходить за ним, он всегда испытывал это физическое ощущение ее близости. Она сидела на кресле, боком к нему, заслоняя собой от него свет свечи, и вязала чулок. (Она выучилась вязать чулки с тех пор, как раз князь Андрей сказал ей, что никто так не умеет ходить за больными, как старые няни, которые вяжут чулки, и что в вязании чулка есть что то успокоительное.) Тонкие пальцы ее быстро перебирали изредка сталкивающиеся спицы, и задумчивый профиль ее опущенного лица был ясно виден ему. Она сделала движенье – клубок скатился с ее колен. Она вздрогнула, оглянулась на него и, заслоняя свечу рукой, осторожным, гибким и точным движением изогнулась, подняла клубок и села в прежнее положение.
Он смотрел на нее, не шевелясь, и видел, что ей нужно было после своего движения вздохнуть во всю грудь, но она не решалась этого сделать и осторожно переводила дыханье.
В Троицкой лавре они говорили о прошедшем, и он сказал ей, что, ежели бы он был жив, он бы благодарил вечно бога за свою рану, которая свела его опять с нею; но с тех пор они никогда не говорили о будущем.
«Могло или не могло это быть? – думал он теперь, глядя на нее и прислушиваясь к легкому стальному звуку спиц. – Неужели только затем так странно свела меня с нею судьба, чтобы мне умереть?.. Неужели мне открылась истина жизни только для того, чтобы я жил во лжи? Я люблю ее больше всего в мире. Но что же делать мне, ежели я люблю ее?» – сказал он, и он вдруг невольно застонал, по привычке, которую он приобрел во время своих страданий.
Услыхав этот звук, Наташа положила чулок, перегнулась ближе к нему и вдруг, заметив его светящиеся глаза, подошла к нему легким шагом и нагнулась.
– Вы не спите?
– Нет, я давно смотрю на вас; я почувствовал, когда вы вошли. Никто, как вы, но дает мне той мягкой тишины… того света. Мне так и хочется плакать от радости.
Наташа ближе придвинулась к нему. Лицо ее сияло восторженною радостью.
– Наташа, я слишком люблю вас. Больше всего на свете.
– А я? – Она отвернулась на мгновение. – Отчего же слишком? – сказала она.
– Отчего слишком?.. Ну, как вы думаете, как вы чувствуете по душе, по всей душе, буду я жив? Как вам кажется?
– Я уверена, я уверена! – почти вскрикнула Наташа, страстным движением взяв его за обе руки.
Он помолчал.
– Как бы хорошо! – И, взяв ее руку, он поцеловал ее.
Наташа была счастлива и взволнована; и тотчас же она вспомнила, что этого нельзя, что ему нужно спокойствие.
– Однако вы не спали, – сказала она, подавляя свою радость. – Постарайтесь заснуть… пожалуйста.
Он выпустил, пожав ее, ее руку, она перешла к свече и опять села в прежнее положение. Два раза она оглянулась на него, глаза его светились ей навстречу. Она задала себе урок на чулке и сказала себе, что до тех пор она не оглянется, пока не кончит его.
Действительно, скоро после этого он закрыл глаза и заснул. Он спал недолго и вдруг в холодном поту тревожно проснулся.
Засыпая, он думал все о том же, о чем он думал все ото время, – о жизни и смерти. И больше о смерти. Он чувствовал себя ближе к ней.
«Любовь? Что такое любовь? – думал он. – Любовь мешает смерти. Любовь есть жизнь. Все, все, что я понимаю, я понимаю только потому, что люблю. Все есть, все существует только потому, что я люблю. Все связано одною ею. Любовь есть бог, и умереть – значит мне, частице любви, вернуться к общему и вечному источнику». Мысли эти показались ему утешительны. Но это были только мысли. Чего то недоставало в них, что то было односторонне личное, умственное – не было очевидности. И было то же беспокойство и неясность. Он заснул.

Микроволновая печь (СВЧ), в настоящее время, пользуется большой популярностью, она является самым востребованным кухонным прибором. С помощью микроволновой печи можно не только разогреть или приготовить еду, но и произвести размораживание продуктов и даже продезинфицировать некоторые кухонные принадлежности, не содержащие металл. Данный прибор стал сегодня совершенно обыденным.

Микроволновая печь – это бытовой электрический прибор, который предназначен, в основном, для приготовления или же подогрева пищи в быстром режиме. Используют микроволновки и некоторых производствах, где нужно разогревать необходимых материалов.

В отличие от обычных печей, разогрев разных продуктов в данном устройстве происходит довольно-таки быстро, так как радиоволны способны проникать глубоко внутрь продуктов. Это кардинально сокращает разогрев любого продукта и способствует сохранению всех полезных веществ в нем.

Устройство всех СВЧ-печей состоит, как правило, из одинаковых компонентов. Конструкция микроволновок имеет основные и вспомогательные элементы. Внешний вид этих приборов может быть очень разнообразным. Размеры, расцветки и функции могут отличаться, у каждой отдельной печи, они могут быть разными.

Строение микроволновой печи:

  • Камера, оснащенная вращающимся подиумом;
  • Магнетрон, является главным элементом – СВЧ-излучатель;
  • Трансформатор;
  • Металлический корпус с дверцей, которая блокируется при работе прибора;
  • Схема управления и коммуникаций;
  • Волновод.

Так же внутри микроволновка должна быть оборудована вентилятором. Назначение его очень велико, так как без него не будет работать сам прибор. Такое устройство обеспечивает прекрасную работу магнетрона и охлаждает электронные схемы.

Как работает микроволновая печь: ее разновидности

Работа микроволновой печи очень проста, она основана на СВЧ-излучении. Сердцем каждой микроволновки является такой элемент, как магнетрон. Он и есть источником излучения. Частота микроволн составляет примерно 2450 мГц, а мощность современных микроволновок может равняться 700 – 1000 Вт. Работает такая печь от электричества.

Чтобы магнетрон хорошо работал и не перегревался, рядом с ним устанавливают вентилятор. Он же и занимается циркуляцией воздуха внутри самой печи и способствует равномерному обогреву пищи или продуктов.

Микроволны попадают в печь по волноводу, а затем стенки, которые изготовлены из металла, отражают само магнитное излучение. Излучение, проникая глубоко в продукты, заставляют их молекулы очень быстро двигаться. Эти действия способствуют трению, вследствие чего и выделяется тепло (присутствует физика). Это тепло и будет разогревать продукты.

Разновидности электроприборов:

  • С грилем;
  • Печь с конвекцией;
  • Устройство с инверторным управлением;
  • Прибор с микроволнами, которые распределяются равномерно;
  • Мини-микроволновка.

Главное достоинство всех микроволновок – это дизайн. Рынок предоставляет огромный выбор приборов, можно выбирать, как модель стильную, так и эргономичную. Описание этих моделей позволит вам выбрать понравившуюся модель, которая станет не просто украшением кухни, а и его изюминкой. Примером может стать микроволновка фирм Самсунг.

Блок управления: принцип работы микроволновки

У каждой микроволновки есть такой немало важный элемент, как блок управления. Он в свою очередь выполняет две основные функции: поддерживает заданную мощность и отключает прибор, когда установленное время истекло. На сегодняшний день, технологии разработали новый вид этого элемента – электронный.

Сегодня электронный блок может поддерживать не только основные свои функции, но и некоторые дополнительные. Некоторые из них нужные, а другие совсем не понадобятся. У многих современных моделей есть наличие гриля, им так же управляет блок управления.

На сегодня, командный блок оснащен разными микропроцессорами, которые, в свою очередь, поддерживают функциональность других программ. Поэтому блок питание и может отвечать за работу дополнительных функций.

Дополнительные сервисные функции:

  • Встроенные часы;
  • Индикатор мощности;
  • Автоматическая разморозка;
  • Звуковой сигнал, который определяет законченную операцию.

Электронный блок тесно связан с индикаторной панелью и клавиатурой. Важнейшей деталью такого блока является релейный блок. Он отвечает за работу вентилятора, конвектора, встроенной лампы и даже магнетрона.

Частота микроволновки: магнетрон и его составляющие

Принцип работы СВЧ-печи заключается в том, что магнетрон при включении микроволновки, начинает выделять энергию, а затем уже она преобразовывается в тепло. Это тепло идет на обогрев продуктов. Магнетрон переводится, как электровакуумный диод, который состоит из медного анода. Это самая дорогая деталь печи.

Разогрев пищи, которая находится внутри микроволновки, происходит под воздействием электромагнитного излучения, то есть радиоволн сверхвысокой частоты. За счет того, что радиоволны проникают внутрь разогреваемого продукта глубоко, он подогревается очень быстро и эффективно.

Расшифровка магнетрона – это устройство, которое производит огромное количество теплоты, за счет частоты излучения. Частота излучения равняется 2,4 ГГц. Коэффициент полезного действия (КПД) магнетрона составляет 80%, а потребляемая мощность данного вида печи при излучении может составлять 1100 Вт.

Устройство магнетрона состоит из таких деталей:

  • Цилиндрический анод – это его основа, состоящая их 10 секторов, каждая из них сделана из меди;
  • В центре располагается катод с нитью накаливания;
  • Торцевые части заняты магнитами, они создают необходимое для излучения магнитное поле;
  • Выведенная к антенне, которая излучает энергию, проволочная петля.

С помощью антенны-излучателя энергия попадает сначала в волновод, а затем в камеру печи. Напряжение, которое поступает к аноду, составляет 4 тыс. Вт, нити накала – 3 тыс. Вт. Корпус магнетрона находится в радиаторе из пластика, где встроенный вентилятор, обдувает его воздухом, а специальный предохранитель отвечает за его перегрев.

Устройство и принцип работы микроволновой печи (видео)

С английского языка такое высказывание Microwave oven, можно расшифровать как микроволновая печь. Данная конструкция представляет собой бытовой прибор, который работает от электричества и отличается тем, что размораживает или подогревает продукты очень быстро. Происходит это за счет СВЧ-излучения.

Статьи по теме: