Блок питания из трансформатора ибп своими руками. Блок питания, зарядное из бесперебойника. Переделка бесперебойника под зарядку

Практически на халяву купил себе бесперебойник от компьютера на 350Вт. Всегда хотел сделать с него мощный блок питания 10А 12В, все таки трансформатор надежней импульсника. А раз представилась такая возможность, почему бы ей не воспользоваться
Процесс сборки занял часов пять, а всего сборка длилась два месяца. Два месяца назад был куплен бесперебойник
Первым делом был извлечен трансформатор. И проверенны сопротивления сетевых обмоток. Черный провод это начало обмотки, синий это конец обмотки, красный провод это отвод.




Когда с сетевой обмоткой определился решил питание подавать между черным и красным, тогда отдаваемая мощность будет чуть выше, а ток холостого хода будет выше. Естественно это приведет к дополнительному нагреву обмоток, но у меня будет принудительное охлаждение.

Рассмотрев все возможные варианты будущего блока питания, заказал необходимые комплектующие с Китая и что бы не терять время подготовил корпус. Сместил трансформатор с прежнего места и закрепил к дну на четыре винта М4, там где стоял транс. установил радиатор для будущего диодного моста. Так же вырезал в задней части корпуса отверстие для вентилятора.
Где то через месяц пришел импульсный понижающий преобразователь на XL4016 12А 0-32В, вот ссылка на него. Че та завтыкал я сделать фото до переделки преобразователя, поэтому объясню что сделал.




Вместо родных подстроечных резисторов были установлены советские резисторы. Для регулятора напряжения резистор установлен 4,7 кОм, выведу его двумя проводами на лицевую панель. Такой номинал дает возможность регулировать напряжение в пределах 1,2В-18,5В. Для регулятора тока установил переменный резистор 1 кОм, по плюсовому проводу добавил резистор 25 кОм, что дает возможность регулировать ток в пределах 0-10А.
Так же вместо колодки припаял провода, провода 0,75мм кв. скрутил парами для увеличения сечения.

Еще через месяц, буквально вчера, пришли остальные комплектующие и я принялся за работу. Фоток процесса опять нет, поэтому пройдусь по готовому прибору.
На переднюю панель было выведено два регулятора: тока и напряжения. Установлен амперметр типа 91C4 на 10А, электронный вольтметр и клемники, оставшиеся с предыдущего . Так же вывел с платы светодиод индикатор стабилизации по напряжению.




В задней части на перегородке установлена плата преобразователя XL4016, на радиаторе установил диодный мост KBPC5010, к корпусу приклеил конденсатор 35В 4700 мкФ. Конденсатор нужен для фильтрации сетевого напряжения, после моста с ним получилось напряжение 22В.
Для питания вентилятора и вольтметра использовал дополнительную обмотку с трансформатора, установил диодный мостик с конденсатором 2200 мкФ. После диодного моста 25В, это напряжение подходит для питания вольтметра, а вот для питания вентилятора этого много, поэтому вентилятор будет питаться через два запараллеленных резистора 470 Ом 2 Вт. Мостик с конденсатором закрепил навесом.
Кстати для защиты от всяких случаев 🙂 установил предохранитель на боковой панели.



Вся эта сборка занимала всего 5 часов, можно сказать что собранно все за вечер.
Теперь пора перейти к испытаниям сего прибора, ну для начала посмотрю на сколько точный вольтметр.
Основные напряжения выбрал как для зарядки разных Аккумуляторов, первым будет напряжение для LI-ION 4.18 В. Вольтметр показал 4,16 В, что вполне нормально для китайского вольтметра.


Следующее напряжение выбрал для трех литиевых батарей, тут вольтметр показал на 0,1В больше, что так же не так уж страшно.

Последнее напряжение это 14,4В для свинцовых аккумуляторов. Тоже погрешность 0,1 В но опять же допустимо.

Ну и проверю амперметр, хотя он порадовал меня намного больше вольтметра.

Хватит баловаться, пора нагружаться. Что будет с блоком если короткое замыкание?

Ну и теперь нагружу все нихромом, получилось нагрузить на 6А при 15 В

Долго нагружать не буду, потому что расплавлю корпус. Но минут 10 точно все грелось без проблем для корпуса
Последнее, что осталось сделать для этого блока питания, это подключить провода с клемами. Такой провод купил когда то за 300 рублей.

На этом сборка окончена и последнее, что мне нужно сделать, это нарисовать для вас схему блока питания

А так же добавить ссылки на все используемые компоненты
Преобразователь на XL4016 12А 30В стоимостью 290 рублей
Диодный мост 50А 1000В за 100 рублей
Вольтметр 100В за 60 рублей
Амперметр 10А за 130 рублей
Клемник 4 штуки за 100 рублей

Учитывая, что сам бесперебойник стоил 500 рублей, плюс дополнительные детали и прочее, мой блок питания из бесперебойника обошелся мне в 1500 рублей

Ну пока по блоку все, если нравятся мои самоделки и не хотите пропустить новые, подпишитесь на обновления в ВКонтакте или Одноклассниках

Не хочется вникать в рутины радиоэлектроники? Рекомендую обратить внимание на предложения наших китайских друзей. За вполне приемлемую цену можно приобрести довольно таки качественные зарядные устройства


Простенькое зарядное устройство с светодиодным индикатором зарядки, зеленый батарея заряжается, красный батарея заряжена.

Есть защита от короткого замыкания, есть защита от переполюсовки. Отлично подойдет для зарядки Мото АКБ емкостью до 20А\ч, АКБ 9А\ч зарядит за 7 часов, 20А\ч — за 16 часов. Цена на это зарядное всего 403 рубля,доставка бесплатна

Этот тип зарядного способен автоматически заряжать практически любые типы автомобильных и мото аккумуляторов 12В до 80А\Ч. Имеет уникальный способ зарядки в три этапа: 1. Зарядка постоянным током, 2. Зарядка постоянным напряжением, 3. Капельная дозарядка до 100%.
На передней панеле два индикатора, первый указывает напряжение и процент зарядки, второй указывает ток зарядки.
Довольно качественный прибор для домашних нужд, цена всего 781,96 руб, доставка бесплатна. На момент написания этих строк количество заказов 1392, оценка 4,8 из 5. При заказе не забудьте указать Евровилку

Часто в кулацком хозяйстве валяется без дела исправный источник бесперебойного питания (ИБП, UPS) с почившей аккумуляторной батареей. Предлагаю сделать из него источник напряжения 220 вольт в автомобиль. Конструкция ИБП может быть различной, но принцип одинаков.
1. Разбираем ИБП, выкидываем дохлый аккумулятор, откусываем клеммы от него, зачищаем концы.

2. Находим разъем, через который ИБП подключался к сети 220 в. В моем варианте правый нижний. Мы его используем для подключения к бортовой системе питания 12 в.


В моем варианте он подключается к плате через разъем, откусываем его. Если разъема нет, просто откусываем провода от платы, зачищаем концы.


3. Соединяем провода, шедшие к аккумулятору, с проводами от разъема на задней панели. Провода толстые, понадобится мощный паяльник. Не изолируем пока места пайки для последующего прозвона.


4. Находим гнездо прикуривателя и обычный компьютерный шнур (в моем варианте он уже без вилки). Если не предполагается использование инвертора на ходу в салоне авто - настоятельно рекомендую вместо гнезда прикуривателя использовать зажимы "крокодил" и подсоединять девайс прямо с аккумулятору.


Припаиваем гнездо прикуривателя (зажимы), соблюдая полярность (красный "плюс", черный - "минус"), изолируем места пайки.

5. Важный момент - что бы устройство не вопило, как ограбленный еврей, необходимо исключить внутренний динамик.





Снимать ради этого плату и отпаивать мне стало лениво - просто оторвал динамик плоскогубцами)))
В моем варианте пришлось закрепить трансформатор в направляющих, для этого идеально подошла дисконтная карта сети Астор, безвременно погибшей в пучине рынка)))


6. Собираем корпус устройства. Осталось только приделать стандартные розетки. Есть ИБП, у которых они предусмотрены конструкцией. Мне не повезло, пришлось портить переноску и шнур для подключения к ИБП.

ИБП – это очень выгодный прибор. Пока он работает, у пользователя нет проблем с электроснабжением. Но на этом функциональность данного прибора не заканчивается. Простейшая доработка бесперебойника дает возможность создать на его базе такие устройства как преобразователь, блок питания и зарядка.



Как бесперебойник переделать в преобразователь напряжения 12/220 В

Преобразователь напряжения (инвертор) превращает постоянный 12-вольтовый ток в переменный, попутно повышая напряжение до 220 вольт. Средняя стоимость такого устройства – 60-70 долларов США. Однако даже у владельцев изношенных бесперебойников с функцией старта от батареи есть вполне реальный шанс получить работоспособный преобразователь фактически даром. Для этого нужно сделать следующее:

    Вскрыть корпус ИБП.

    Демонтировать аккумулятор, сняв с клемм накопителя два провода – красный (на плюс) и черный (на минус).

    Демонтировать спикер – устройство звуковой сигнализации, похожее на сантиметровую шайбу.

    Припаять к красному проводу предохранитель. Большинство конструкторов советуют использовать предохранители на 5 ампер.

    Соединить предохранитель с контактом «входа» ИБП – гнезда, куда вставлялся кабель, соединяющий бесперебойник с розеткой.

    Соединить черный провод со свободным контактом гнезда «входа».

    Взять штатный кабель для подключения ИБП к розетке, срезать вилку. Подключить разъем в гнездо входа и определить цвета проводов, соответствующие красному и черному контактам.

    Подсоединить провод от красного контакта к плюсу аккумулятора, а от черного – к минусу.

    Включить ИБП.

Внутреннее устройство ИБП Eaton 5P 1150i

Такую трансформацию допускают только бесперебойники с функцией старта от батареи. То есть ИБП должен изначально уметь включаться от , без подключения к розетке.

Если у ИБП есть штатная розетка – 220 вольт можно снимать с ее контактов. Если таковой розетки нет – ее заменит удлинитель, подключенный к гнезду «выхода» бесперебойника. Вилка удлинителя удаляется, после чего провода припаиваются к контактам гнезда «выхода».

Основные недостатки подобных преобразователей :

  • Рекомендуемое время работы такого инвертора – до 20 минут, поскольку ИБП не рассчитаны на длительную работу от аккумуляторов. Однако этот недостаток можно устранить, врезав в корпус ИБП компьютерный вентилятор, работающий от 12 В.
  • Отсутствие контроллера заряда аккумулятора. Пользователю придется периодически проверять напряжение на клеммах накопителя. Для устранения этого недостатка в конструкцию преобразователя можно врезать обычное автомобильное реле, припаяв красный провод за предохранителем к 87 контакту. При правильном подключении такое реле разомкнет подачу энергии при падении напряжения на аккумуляторе ниже 12 вольт.

Как из бесперебойника сделать блок питания

В этом случае из всей конструкции бесперебойника понадобится только . Поэтому решившемуся на подобную переделку ИБП пользователю придется либо распотрошить весь ИБП, оставив только корпус и трансформатор, либо снять эту деталь, заготовив для нее отдельный корпус. Далее действуют по следующему плану:

    С помощью омметра определяют обмотку с самым большим сопротивлением.Типовые цвета – черный и белый. Эти провода будут входом в блок питания. Если трансформатор остался в ИБП, то этот шаг можно пропустить – входом в самодельный блок питания в этом случае будет «входное» гнездо на торце ИБП, связующее прибор с розеткой.

    Далее на трансформатор подают переменный ток на 220 вольт. После этого с оставшихся контактов снимают напряжение, подыскивая пару с разностью потенциалов до 15 вольт. Типовые цвета – белый и желтый. Эти провода будут выходом из блока питания.

    Вход в блок питания формируют из проводов, по одну сторону от сердечника. Выход из блока формируют из проводов, расположенных с противоположной стороны.

    На выходе из блока питания ставят диодный мост.

    Потребители подключаются к контактам диодного моста.

Трансформатор

Типовое напряжение на выходе из трансформатора – до 15 В, однако оно просядет после подключения к самодельному блоку питания нагрузки. Вольтаж на выходе конструктору такого устройства придется подбирать путем экспериментов. Поэтому практика использования трансформатора ИБП как основы блока питания для компьютера – это далеко не самая лучшая идея.

Переделка бесперебойника под зарядку

В этом случае не нужна минимальная трансформация, похожая на описанную абзацем выше. Ведь у бесперебойника есть своя батарея, которая заряжается по мере надобности. В итоге для превращения ИБП в зарядное устройство нужно сделать следующее:

    Обнаружить первичный и вторичный контур трансформатора. Этот процесс описан абзацем выше.

    Подать на первичный контур 220 вольт, врезав в цепь регулятор напряжения – в качестве такового можно использовать реостат для лампочек, заменяющий традиционный выключатель.

    Регулятор поможет откалибровать напряжение на обмотке выходе в пределах от 0 до 14-15 вольт. Место врезки регулятора – перед первичной обмоткой.

    Подключить к вторичной обмотке трансформатора диодный мост на 40-50 ампер.

    Соединить клеммы диодного моста с соответствующими полюсами аккумулятора.

    Уровень заряда аккумулятора контролируется по его индикатору или вольтметром.

Написать письмо

По любому вопросу вы можете воспользоваться данной формой.


Основное назначение источников бесперебойного питания (ИБП) - непродолжительное питание различной офисной техники (в первую очередь, компьютеров) в аварийных ситуациях, когда отсутствует сетевое напряжение. В состав ИБП входит аккумулятор (как правило, напряжением 12 В), повышающий преобразователь напряжения и узел управления. В дежурном режиме происходит подзарядка аккумулятора, в аварийном - включается преобразователь напряжения.

Как и всё оборудование, ИБП выходят из строя или морально устаревают. Поэтому их можно использовать как основу для изготовления, например, лабораторного блока питания (БП). Наиболее подходящими для этого могут быть ИБП, у которых преобразователи напряжения работают на низкой частоте (50...60 Гц), и в их состав входит мощный повышающий трансформатор, который может работать и как понижающий.

Для изготовления лабораторного БП в качестве "донора" был использован ИБП KIN-325A. При разработке ставилась задача получить простую схему, применив при этом как можно больше элементов от "донора". Кроме трансформатора и корпуса, были использованы мощные полевые транзисторы, выпрямительные диоды, микросхема счетверённого ОУ, электромагнитное реле, все светодиоды, варистор, некоторые разъёмы, а также оксидные и керамические конденсаторы.

Схема БП показана на рис. 1. Сетевое напряжение через плавкую вставку FU1 и выключатель питания SA1 поступает на первичную обмотку трансформатораТ1 (маркировка - RT-425B). Варистор RU1, включённый параллельно этой обмотке, совместно с плавкой вставкой защищают БП от повышенного сетевого напряжения. Через токоограничивающий резистор R1 и диод VD1 питается светодиод HL1, сигнализирующий о наличии сетевого напряжения.

Мощный выпрямитель на диодных сборках VD2-VD5 подключён к обмотке II (с отводом посередине, номинальное напряжение 16 В) трансформатора Т1. В зависимости от положения контактов реле К1.1 выпрямитель работает как двухполупериодный с общим выводом трансформатора (показано на рис. 1) и выходным напряжением около 10 В или как мостовой с выходным напряжением около 20 В. Выходное напряжение этого выпрямителя поступает на регулирующий элемент - полевой транзистор

VT1. Конденсаторы С1 и С3 сглаживают пульсации выпрямленного напряжения, резистор R2 - датчик тока. Резистор R17 обеспечивает минимальную нагрузку стабилизатора напряжения при отсутствии внешней нагрузки.

Маломощный выпрямитель собран на диодах VD6-VD9 и сглаживающих конденсаторах С2 и C5. От него питается параллельный стабилизатор напряжения на микросхеме DA1, ОУ DA2, реле К1 и вентилятор M1. Светодиод HL2 сигнализирует о наличии напряжения на выходе этого выпрямителя.

Регулируемый стабилизатор напряжения собран на ОУ DA2.3 и транзисторе VT1. Образцовое напряжение на регулятор напряжения - резистор R11 - поступает с выхода стабилизатора на микросхеме DA1. Выходное напряжение БП с движка подстроечного резистора R12 поступает на инвертирующий вход ОУ DA2.3. Этим резистором устанавливают максимальное выходное напряжение. Регулируемый ограничитель тока собран на ОУ DA2.1 и DA2.2. Напряжение, пропорциональное выходному току с датчика - резистора R2, поступает на усилитель напряжения на ОУ DA2.1 и затем на ОУ DA2.2, который сравнивает его с образцовым, поступающим на его неинвертирующий вход с выхода резистивного делителя R4R7R8. Резисторами R7 и R8 устанавливают порог ограничения тока.

Транзистор VT2 управляет реле К1. Оно сработает, когда напряжение на затворе этого транзистора превысит пороговое значение (для указанного на схеме транзистора пороговое напряжение - 2...4 В). Подстроечным резистором R19 устанавливают выходное напряжение БП, при превышении которого реле переключает выходное напряжение выпрямителя. Транзистор VT3 совместно с терморезистором RK1 управляет вентилятором M1. Он включается, когда температура теплоотвода, на котором установлены транзистор VT1 и терморезистор, превысит заранее установленное значение. Пороговую температуру устанавливают резистором R15. Напряжение питания терморезистора стабилизировано параметрическим стабилизатором VD11R16. Излишнее напряжение питания реле К1 падает на резисторе R13, а вентилятора М1 - на резисторе R18.

Если ток нагрузки не превышает порогового значения, напряжение на неинвертирующем входе ОУ DA2.2 больше напряжения на инвертирующем, на его выходе присутствует напряжение, близкое к напряжению питания, поэтому диод VD10 закрыт, а ток через светодиод HL3 не протекает. В этом случае управляющее напряжение на затвор полевого транзистора VT1 поступает с выхода ОУ DA2.3 через резистор R14 и работает стабилизатор напряжения. Если выходное напряжение стабилизатора менее 4 В, транзистор VT2 закрыт и реле К1 обесточено. В этом случае на стоке транзистора VT1 напряжение - 10 В. При выходном напряжении более 4 В транзистор VT2 открывается и реле К1 срабатывает. В результате напряжение на стоке транзистора VT1 повышается до 20 В. Такое техническое решение позволяет повысить КПД устройства.

Когда ток нагрузки превысит порого вое значение, напряжение на выходе ОУ DA2.2 уменьшится, диод VD10 откроется и напряжение на затворе транзистора VT1 уменьшится до значения, обеспечивающего протекание установленного тока. В этом режиме через светодиод HL3 протекает ток, и он сигнализирует о переходе в режим ограничения тока. Ток ограничения устанавливают резистором R8 в интервале 0...0,5 А и R7 - в интервале 0...5 А. Конденсаторы С4 и С6 обеспечивают устойчивость работы ограничителя тока. Увеличение их ёмкости повышает устойчивость, но снижает быстродействие ограничителя тока.

В устройстве применены постоянные резисторы - С2-23, Р1-4 или импортные, подстроечные - СП3-19, переменные - СП4-1, СПО. Чтобы шкала переменных резисторов, регулирующих напряжение или ток, была линейной, они должны быть группы А. Терморезистор - ММТ-1. Резистор R2 изготовлен из отрезка провода ПЭВ-2 0,4 длиной 150 мм. Кроме функции датчика тока, он работает и как плавкий предохранитель при возникновении аварийных ситуаций. Оксидные конденсаторы - импортные, на месте неполярных можно использовать керамические К10-17. Вентилятор - компьютерный с током потребления 100...150 мА, его ширина должна быть равна ширине теплоотвода. Реле - любое, рассчитанное на коммутируемый ток 10 А и номинальное напряжение обмотки 12...15 В. XS2, XS3 - гнёзда или клеммники.

Большинство элементов размещены на двух печатных платах, изготовленных из фольгированного с одной стороны стеклотекстолита толщиной 1,5...2 мм. На первой (рис. 2) собраны выпрямители, смонтированы транзисторы VT2, VT3 с "окружающими" их элементами и некоторые другие детали. Печатные проводники, соединяющие элементы мощного выпрямителя, "усилены" - на них припаяны отрезки лужёного медного провода диаметром 1 мм. "Штатные" выводы трансформатора Т1 проводные, они снабжены двумя гнёздами. Если планируется их использовать, на первой плате монтируют соответствующие им вилки, которые выпаивают из "родной" платы ИБП.

На второй плате (рис. 3) смонтированы все микросхемы, светодиоды, а также некоторые другие элементы. На стороне, свободной от печатных проводников, приклеен кнопочный выключатель SA1 (П2К или аналогичный). Светодиоды должны входить в "штатные" отверстия на передней стенке корпуса, к выключателю приклеивают "штатный" толкатель.

Первая плата установлена рядом с задней стенкой корпуса, вторая - вплотную к передней. Для крепления плат использованы по два шурупа и "штатные" крепёжные пластмассовые стойки на верхней крышке корпуса. На ребристом теплоотводе с внешними размерами 30x60x90 мм (он установлен между платами) размещены транзистор VT1, терморезистор и вентилятор. На терморезистор надевают термоусаживаемую трубку и затем приклеивают к теплоотводу рядом с транзистором. Поскольку при изменении температуры терморезистора полевой транзистор VT3 открывается и закрывается плавно, вентилятор начинает вращение и останавливается также плавно. Поэтому транзистор VT3 может заметно разогреваться и заменить его на маломощный, например 2N7000, нельзя.

На передней панели (рис. 4) в отверстиях установлены переменные резисторы и разъёмы XS2 и XS3, к которым припаяны резистор R17 и конденсатор С7. Блочная вилка XP1 и гнездо XS1 - "родные", они размещены на задней стенке в нижней её части. Гнездо XS1 можно использовать для подключения какого-либо устройства, работающего одновременно с лабораторным БП, например осциллографа.

Налаживание начинают с установки максимального выходного напряжения. Делают это с помощью резистора R12, движок резистора R11 при этом должен быть в верхнем по схеме положении. Если встраивать вольтметр в блок питания не планируется, резистор R11 снабжают ручкой с указателем и градуируют его шкалу. При открытом транзисторе VT2 подборкой резистора R13 устанавливают на реле К1 номинальное напряжение, а при открытом VT3 резистором R18 устанавливают напряжение 12 В на вентиляторе M1. Температуру включения вентилятора устанавливают резистором R15.

Для налаживания ограничителя тока к выходу БП подключают последовательно соединённые амперметр и нагрузочный переменный резистор сопротивлением 10...15 Ом и мощностью 50 Вт. Движки резисторов R4 и R7 устанавливают в левое по схеме положение, движок R8 - в правое. Нагрузочный резистор должен иметь максимальное сопротивление. При выходном напряжении около 10 В нагрузочным резистором устанавливают ток 5 А, а резистором R5 - напряжение 0,9...1 В на выходе ОУ DA2.1. С помощью нагрузочного резистора увеличивают выходной ток нагрузки до 6 А и, плавно вращая движок резистора R4, добиваются включения светодиода HL3 (включения режима ограничения тока) и затем устанавливают резистором R4 выходной ток 5 А. При перемещении движка резистора R7 вправо (по схеме) выходной ток должен уменьшиться до нуля. В этом случае резистором R8 можно регулировать выходной ток в интервале 0...0,5 А.

Если встраивать амперметр в блок питания не планируется, шкалы этих резисторов градуируют. Для этого (в режиме ограничения тока) изменяют выходное напряжение и сопротивление нагрузки, устанавливают требуемое значение тока и наносят метки на шкалу. При этом в интервале 0...0,5 А ток устанавливают резистором R8 (резистор R7 должен быть в положении "0"), а в интервале 0...5 А - резистором R7 (резистор R8 - в положении "0").

В режиме ограничения тока можно заряжать аккумуляторы и аккумуляторные батареи. Для этого устанавливают конечное напряжение и ток зарядки, а затем подключают аккумуляторную батарею (аккумулятор).

Дальнейшее направление доработки предложенного блока питания - установка встроенного цифрового вольтметра, амперметра или комбинированного измерительного устройства.


Дата публикации: 12.12.2014

Мнения читателей
  • zluka / 23.01.2017 - 00:07
    Там габаритный размер транса ~60 вт, как и в RT-525 и RT-W06BN, и даже 5А - это в перегруз, оптимально - 4А. Другое дело 430-9102, с него можно 25-30А снять. Да и не будет там (20-12)x5, просадка при нагрузке в 5А - до 14в и ниже.
  • Новичок / 05.03.2016 - 15:03
    Простая схема, но при максимальной нагрузке 5А в нагрузку будет уходить 12х5=60 Вт, а на регулирующем транзисторе рассеиваться (20-12)х5=40 Вт. Нет ли способа "выжать" из ИБП больше?

Все мы знаем как неприятно, когда внезапно отключают свет. Это может случиться в любой момент - дома или на даче. Жителям сельской местности не позавидуешь вдвойне, тем более, если в такие моменты работает или циркуляционный насос. Внезапное выключение света может привести к гибели будущего выводка или остановке насоса для отопления.

Есть отличное решение этой проблемы – нужно всего-навсего купить автомобильный инвертор с 12-на 220 в. Однако цены на них очень велики, не каждый сельский житель сможет позволить себе купить такую дорогую вещь.

Что же делать – где можно недорого приобрести источник бесперебойного питания для освещения дома, теплицы, дачи т. д.? Конечно же, попробовать сделать его своими руками! А интернет нам в этом поможет.

Оказывается, есть более простое и дешевое решение – нужно всего лишь навсего, переделать бесперебойник в инвертор.

Для этой цели нам понадобится рабочий источник бесперебойного питания от компьютера, который можно купить буквально за копейки на "блошиных" рынках или через объявления местных газетах по продаже б/у компьютерной техники. Однако для наших задач бесперебойник не совсем подходит и требует небольшой переделки. Все, кто умеет работать с паяльником, без особого труда справятся с такой работой.

Переделав бесперебойник на инвертор, на выходе мы получим:

  • стабилизатор напряжения;
  • зарядное устройство;
  • и конечно инвертор.

После нашей переделки, если бесперебойник на 300 Вт, то на него можно нагрузить Вт 200. Конечно, чем мощней бесперебойник, тем больше можно увеличить на него нагрузку.

В некоторых бесперебойниках попадаются места, где можно дополнительно усилить мощность. Эти места называются транзисторными ключами. Стоит их допаять, как мощность бесперебойника увеличится.


Производители порой не допаивают такие транзисторы, чтобы удешевить изделие. Транзисторы нужно такого же номинала, как и установлены.

Так же следует увеличить сечение проводов от разъёма платы до АКБ на крокодилы.


От трансформатора вторичной обмотки до клем платы,


нужно добавить в параллель ещё по одному проводу для увеличения сечения.

Трансформатор пришлось немного расковырять, чтобы добраться до выхода вторичной обмотки. Этих проводов выходит три штуки.


Чтобы бесперебойник не пищал каждую минуту, мы должны выпаять круглую пищалку.






На задней стенке удалил ненужные разъёмы и оставил отверстие от них для выхода воздуха.



От этих клем находим два провода питания 220 вольт – выход с платы после преобразователя и эти провода выводим наружу, закрепляем свою розетку.

Наш инвертор из бесперебойника почти готов. Для контроля разряда батареи автомобильного аккумулятора можно встроить цифровой вольтметр. Я на всякий случай ещё подключил термодатчик для контроля температуры на транзисторных ключах. Термопару от мультиметра закрепил на радиаторе транзистора полевика.


Немаловажный момент: инвертор из бесперебойника должен иметь запуск холодного включения – это функция, когда он может включаться без внешнего питания от бытовой розетки 220 вольт. В некоторых моделях кнопка включения холодного пуска имеет двойное нажатие с разным интервалом времени.


Вот и все переделки. Такой инвертор можно брать с собой в поездку – на пикник, рыбалку, дома – через него можно подключать лампы, ноутбук, заряжать телефоны, фонарики, на даче и в сельской местности – подключать инкубатор, освещение теплицы и т. д., но не более 70% мощности от нашего изделия.

Для освещения лучше использовать диодные лампы, они мало тянут и ярко горят. Так же я подключал паяльник на 80 Вт, даже телевизор работает без проблем.

Статьи по теме: